
Leg Detection for Socially Assistive
Robots: Differentiating Multiple Targets

with 2D LiDAR

Hanchen Yao1,2,3 , Jianwei Peng1,2,3 , Zhelin Liao2,3 , Ran Zhao4 ,
and Houde Dai1,2,3(B)

1 Fujian College, University of Chinese Academy of Sciences, Jinjiang 362216, China
{yaohanchen21,pengjianwei20}@mails.ucas.ac.cn

2 Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou 350002, China

dhd@fjirsm.ac.cn
3 Quanzhou Institute of Equipment Manufacturing, Haixi Institutes,

Chinese Academy of Sciences, Jinjiang 362216, China
3211239023@fafu.edu.cn

4 Zhongyuan-Petersburg Aviation College, Zhongyuan University of Technology,
Zhengzhou 451191, China

zhaoran@zut.edu.cn

Abstract. While socially assistive robots working in environments with
a lot of people walking and obstructions, LiDAR-based detectors may
have trouble locating the target person. The lack of identifying informa-
tion is a drawback of the 2D range data obtained by a LiDAR sensor.
Consequently, when applying the traditional technique of clustering 2D
laser dots with geometric properties, modern LiDAR-based leg detec-
tors typically fail. To recognize and identify the target individual in real
time, an improved leg detector based on density-weighted support vector
data description (DW-SVDD) is presented. The suggested DW-SVDD leg
detector in this study incorporates density weight, width, and girth fea-
tures into the support vector data description. Socially assistive robots
that follow humans may quickly and accurately identify items from vast
quantities of 2D laser point data with this detector. To evaluate detec-
tion accuracy, the proposed leg detector is tested on a mobile robot both
indoors and outdoors. Field experiment results show that the proposed
DW-SVDD leg detector enables socially assistive robots to detect partial
occlusions and similar obstacles effectively. Additionally, the results indi-
cate that the proposed leg detector achieves an MOTA of 34.96% and
MOTP of 39.17%, demonstrating its efficacy in practical applications.

Keywords: Leg detection · Socially assistive robot · Multiple target
detection

This work was supported in part by the Central Government Guides Local Spe-
cial Funds for Science and Technology Development under Grant 2020L3028 and
2021L3047.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Sun et al. (Eds.): ICCSIP 2023, CCIS 1918, pp. 87–103, 2024.
https://doi.org/10.1007/978-981-99-8018-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8018-5_7&domain=pdf
http://orcid.org/0000-0001-7822-4088
http://orcid.org/0009-0000-3111-4754
http://orcid.org/0009-0005-2780-0889
http://orcid.org/0000-0002-1109-5434
http://orcid.org/0000-0001-7417-7974
https://doi.org/10.1007/978-981-99-8018-5_7


88 H. Yao et al.

1 Introduction

Is there a solution to specifically identify the target in a multi-person scenario
without the use of wearable sensors? Human-robot interaction (HRI) requires
socially assistive robots to detect, identify, and track the behavior of the target
person [1]. There is an urgent requirement for socially assistive robots [2–4] to
serve a congested workspace due to the acceleration of aging process and the rise
in labor costs (e.g., hospital, supermarket, restaurant, or warehouse). In multi-
person and cluttered scenarios, identifying interactive targets without the use of
wearable sensors remains an unresolved challenge.

Camera sensors have gained popularity in the robotics market. However, they
lose the ability to recognize pedestrians at night. Compared to RGB-D cameras
require advanced computational power and violate personal privacy [5], Light
Detection And Ranging (LiDAR) is a high-accuracy range sensor that provides 2-
dimensional (2D) range information at high rates for dynamic environments. The
usage of RGB-D cameras is constrained by the COVID-19 pandemic since masks
hide a significant amount of RGB information about the face. Additionally, RGB-
D cameras are rarely useful in environments with inadequate or excessive lighting
when used outside.

A LiDAR-based socially assistive robot, which can serve as a logistical help,
doesn’t need active markers or optical reflection markers. For instance, the
human-following robot EffiBOT (Effidence Inc., Romagnat, France) uses LiDAR
sensors [7]. EffiBOT can follow a picking operator due to its “Follow-me” func-
tionality. The efficiency of logistics in factories and warehouses is increased
because picking operators no longer need to manually push or pull carts.

The majority of researches concentrated on leg detection with LiDAR because
of the height restrictions of mobile robots. Compared to waist detection [8] and
shoulder detection [9], leg detection does not require adjusting the measurement
range based on the person’s height. Leg detection at a lower height can simul-
taneously detect human legs and obstacles, while waist detection and shoulder
detection at a higher height are considered to be prone to overlooking poten-
tial obstacles. Generally speaking, investigations [8–12] aim to build a classifier
based on the leg’s geometry constraints. The circle fitting [9] and bounding box
[8] are traditional methods for obtaining leg characteristics. However, neither of
the two approaches is sufficient to keep the leg detecting stable. Arras et al. [10]
created a ground-breaking work in the AdaBoost approach to develop a robust
classifier, which collected 14 characteristics to learn the shape of legs, to address
the issue brought on by the sparsity of the LiDAR data. The drawback is that
the situation with the occluded legs was not taken into account. Li et al. [11]
added extra characteristics to an AdaBoost-based detector to increase the detec-
tion accuracy when legs are partially occluded. Additionally, Beyer et al. [12]
used the leg features to create a deep learning (DL) detector. This DL method’s
lengthy run-time makes it impossible to employ online with a robot that follows
people. In conclusion, these methods are prone to false positives brought on by
ambient noises, such as chair and table legs. Due to the poor information quality
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Fig. 1. In multi-person environments, leg detection may experience recognition errors
due to insufficient features. The test dataset is divided into incorrect classification
and correct classification. (a) Laser data where both legs are connected is difficult to
recognize as a single person. (b) Side-standing leg data is obstructed by the other leg.
(c) Obstacles resembling cylinders are often mistakenly identified as human legs.

of 2D range data, it is difficult for these conventional classifiers to categorize the
target person’s leg in the crowd.

Recently, to solve the classification issue in 2D range data, some researchers
used the support vector data description (SVDD) as a one-class classification
(OCC) [13]. Chung et al. [14] used an SVDD-based classifier to choose leg clus-
ters without presuming that human legs have any particular geometric shapes.
As a result, even though more complicated leg forms were supported for search-
ing, the accuracy of leg detection decreased. Cha et al. [15] addressed this prob-
lem by modifying the SVDD-based classifier to learn the classification boundary
in 3D feature space using a 2D LiDAR. Jung et al. [16] used an SVDD algo-
rithm to detect the shoulder using a marathoner service robot in order to assess
the outside performance. Despite the great performance of these SVDD algo-
rithms for detecting the target person’s legs, it was challenging to distinguish a
specific target from other objects and occlusions. The SVDD-based leg detector
could identify hallways and human legs for side-by-side following in our prior
investigation [17] (Fig. 1).

This paper suggests an enhanced leg detector based on density-weighted
support vector data description (DW-SVDD) to locate the target person in a
crowded environment with obstacles and occlusions. The proposed DW-SVDD
leg detector offers the following benefits over the leg detectors discussed above:
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– In this paper, we propose a novel approach called Density-Weighted Support
Vector Data Description (DW-SVDD) that leverages 2D LiDAR data to cre-
ate a 3D density representation, enabling robust leg detection in complex
scenarios. The proposed DW-SVDD leg detector inputs girth Gi, width Wi

characteristics and density weight ρ(xi) into support vector data description.
As a result, it is possible to obtain dynamic leg data with a more reliable
detecting performance, even in situations with similar obstacles and partial
occlusions.

– The density weight parameter for the density distribution of LiDAR data is
calculated by comparing the k-NN distance of each data point with the max-
imum k-NN distance of the dataset. One of the main advantages of the k-NN
algorithm is its simplicity and intuitive nature. It does not assume any under-
lying statistical distribution of the data and can be applied to both numerical
and categorical data. Therefore, our suggested DW-SVDD leg detector may
be incorporated into the robot platform’s low-cost embedded system.

The rest of this paper is organized as follows. Section 2 is about the DW-
SVDD leg detector proposed in this paper and its application for socially assistive
robots. Different experiments are designed to evaluate the traditional SVDD and
DW-SVDD in Sect. 3. In this section, our proposed DW-SVDD leg detector is
compared with other leg detectors in a real-time robot platform. Also, indoor and
outdoor datasets are self-collected for real-time evaluation of the DW-SVDD leg
detector. Additionally, all leg detectors are evaluated in CLEAR MOT metrics
for multi-object tracking. Finally, Sect. 4 concludes the paper.

2 DW-SVDD Leg Detector

Support Vector Data Description (SVDD) is a powerful machine learning tech-
nique widely used for anomaly detection, novelty detection, and one-class classifi-
cation tasks [18]. As an improved version of the support vector machine, SVDD
generates a minimum-volume hypersphere that encircles the positive samples
in feature space and identifies abnormalities of leg characteristics. By giving
the density weight of each data point during the search process, the descrip-
tion favors data points in high-density areas. Eventually the optimal description
shifts toward these dense regions. Therefore, the high-level confidence of leg data
is described as a positive cluster with similar obstacles and partial occlusions.

2.1 Density Weighted Support Vector Data Description

Given the 2D range data as xi = {x1, x2, . . . , xm}, where xi ∈ Rm, i =
1, 2, . . . ,m. In the proposed DW-SVDD human leg detector, the density weight
ρ(xi) depends on the k-nearest neighbor (k-NN) distance [19–21], which denotes
d

(
xi, x

k
i

)
as the distance between xi and the k-th nearest neighbor of xk

i .
In k-NN, a query xk

i is labeled by a majority vote yk
i of its k-nearest neighbors

in the training set. To weigh close neighbors more heavily, Fig. 2 is arranged in
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Fig. 2. Laser point in 2D range data is detected by using the DW-SVDD leg detector.
DW-SVDD transforms 2D laser data into 3D density relationships, making it more
suitable for leg detection in multi-person scenarios. Leg data description depends on
F (xi) and ρ(xi).

increasing order in terms of Euclidean distance d
(
xi, x

k
i

)
, such as:

⎧
⎨

⎩
d

(
xi, x

k
i

)
=

√(
xi − xk

i

)T (
xi − xk

i

)

yi = argmax
∑

(xk
i ,yk

i ∈T) δ
(
y = yk

i

) (1)

where xi is the training vector in the feature space, yi is the corresponding class
label in the training set T = {xi, yi}N

i=1, xk
i is the query for the i-th nearest

neighbor among its k nearest neighbors, yk
i is the class label for the i-th near-

est neighbor among its k nearest neighbors. Also, δ
(
y = yk

i

)
is the Dirac delta

function [13].
As shown in Fig. 2, by measuring the k-NN distance, density weight ρ(xi) is

set as:

ρ (xi) = 1 − d
(
xi, x

k
i

)

d
(
xj , xk

j

) (2)

where d
(
xj , x

k
j

)
is the maximum k-NN distance of the dataset.

Density weight ρ (xi) measures the relative density based on the density
distribution of the target data by comparing the k-NN distance of each data
point with the maximum k-NN distance of the dataset. Moreover, density weight
falls within the range ρ (xi) ∈ (0, 1).

To define attributes of legs, girth Gi, width characteristics Wi and density
weight ρ (xi) are utilized to build the proposed DW-SVDD-based leg detector.
The DW-SVDD optimization objective is to seek a tight data description:

⎧
⎨

⎩

min L (R, c, ξi) = R2 + C
∑n

i=1 ρ (xi)F (xi) ξi

s.t. ‖xi − c‖ ≤ R2 + ξi, ξi ≥ 0, F (xi) = (Gi,Wi)
Gi =

∑m−1
j=1 d (xj , xj+1) ,Wi = d (x1, xm)

(3)

where R is the hypersphere radius, c is the center of the sphere, ξi is the relax-
ation variable for reducing the influence of singular points, and C is the penalty
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factor that weighs the hypersphere volume and misclassification rate. F (xi) is
a function that maps data from the original space to the feature space through
nonlinear transformation.

To describe the LiDAR data, the Lagrange function can be further derived
as:

L (R, c, ξi) = R2 + C
∑N

i=1 ρ (xi) ξi

−∑N
i=1 αi

(
R2 + ξi − ‖F (xi) − c‖2

)
− ∑N

i=1 ηiξi
(4)

where αi and ηi are the Lagrange multipliers.
The original training data are not spherically distributed for the LiDAR

data that a nonlinear data relationship exists. Accordingly, anomalies cannot be
isolated effectively by a hypersphere. Since partial differentiation should equal
zero [13], the new equation and constraints are denoted as:

⎧
⎨

⎩

L =
∑m

i=1 αik (xi, xi)
−∑m

i=1

∑m
j=1 αiαjk (xi, xj)

s.t.0 ≤ αi ≤ C,
∑m

i=1 αi = 1
(5)

where k (xi, xi) is an inner product, and k (xi, xj) is the Kernel function.
By seeking the solution of Eq. (3), we could get the center c and radius R of

the hypersphere: {
c =

∑
i αixi

R = |xk − c| (6)

where xk is the support vector, whose distance to the center of the hypersphere
is the radius R.

2.2 DW-SVDD Leg Detection Algorithm

To find and save the candidate leg cluster Ck, Algorithm 1 is proposed to describe
the leg detection scheme. The DW-SVDD leg detection algorithm not only takes
geometric features (e.g., the girth Gi and width Wi) into consideration, but also
the density weight ρ(xi). As the algorithm should be executed in real-time on
a socially assistive robot, short computing time and high recognition accuracy
are the advantages of the proposed Algorithm 1. According to the training 2D
range data xi input, candidate leg clusters are obtained with the proposed leg
detection algorithm. Besides, the central position of the LiDAR is the position
of the hypersphere center c in Eq. (6).
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In this paper, we present a novel leg detector for pedestrian tracking based on
DW-SVDD (Density-Weighted Support Vector Data Description). The proposed
approach leverages the benefits of DW-SVDD to accurately and robustly detect
and distinguish human legs in complex and crowded environments. By trans-
forming 2D laser data into 3D density relationships, our leg detector exhibits
enhanced performance in multi-person scenarios, where multiple legs are present
within the sensing range.

Algorithm 1: DW-SVDD Leg Detection Algorithm
Input: xi: the training 2D range data
Output: Ck: the candidate leg cluster

1 for j = 1 to N do

2 d
(
xi, x

k
i

) → Eq.(1);

3 if a query d
(
xi, x

k
i

)
is labeled by a majority vote d

(
yi, x

k
i

)
then

4 xk
i = xsorted(i), y

k
i = ysorted(i);

5 end

6 end
7 foreach k = 1 to N do
8 if xi > xi+1 then

9 [index, dist] = sort [d
(
xi, x

k
i

)
, ascend];

10 end

11 end
12 for i = 1 to k do
13 yi → Eq.(1);
14 ρ(xi) → Eq.(2);
15 Gi, Wi, F (x) → Eq.(3);
16 k (xi, xj) , L →Eq.(5);
17 c, R →Eq.(6);

18 if d
(
c, xk

i

) ∈ (0, R) then
19 CK →Save;
20 end

21 end

2.3 Socially Assistive in Multiplayer Scenarios

As shown in Fig. 3, a socially assistive robot equipped with LiDAR, which col-
lects the clustering of multiple pedestrians. To distinguish the tracking target
Ck (xk, yk, θk) from interfering target Ck+1 (xk+1, yk+1, θk+1), the robot locks
the tracking target by updating the relative change angle Δθ < δc between the
robot and the followed target at each time interval, and the moving distance
Lp < δf of the following target in real-time.
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Algorithm 2: Socially Assistive Algorithm
Input: Ck: the candidate leg cluster
Output: vl, vr: speed input to the left and right wheel motor

1 for k = 1 to N do
2 min d (c, Ck) ; if Δθ < δc,Lp < δf then
3 av, aω, vl, vr → Eq.(9);
4 end

5 end

Fig. 3. Motion control in the robot coordinate system. The LiDAR is installed on the
center of the robot for simplifying the coordinate system, which is set as c (0, 0, 0).

The relative angle variation Δθ between the following target and the robot
in time interval Δt is always within the range of Δθ < δc, which is described as:

{
θ = arctan

(
yk+1−yk

yk+1−yk

)

Δθ = (θk+Δt−θk)
Δt

(7)

The distance with the following target in Δt is always within the range of
Lp < δf , which is described as:

Lp =
√

(xk+Δt − xk)2 + (yk+Δt − yk)2 (8)

According to the dynamic model of socially assistive robots [17], the dynamic
equation of the robot in the X-axis and Y-axis is denoted as:

{
FX = Fk cos θk = mav

FY = Fk sin θk = Jaω

(d(c,Ck)−Ls)

(9)
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where FX and FY are the component of the force on the X-axis and Y-axis,
respectively. Fk is the force that pulls the robot to follow the target. m is the
weight of the robot, J is the rotational inertia of the robot, av and aω are linear
acceleration and angular acceleration, respectively. Ls is the safe distance that
the robot would not collide with the following target.

Algorithm 2 defines how the socially assistive robot maintains a safe distance
Ls between the robot and the following target. More than one cluster may be
available in a cluttered environment [22]. For the safety of the following target,
the robot should follow the nearest cluster.

3 Self-collected Dataset

The majority of datasets are only able to gather 2D range information while
a single target is moving. Despite the fact that Beyer et al. [12] made their
LiDAR dataset-a 10-h record for an aged care facility-available for download.
The users probably live in a relatively clean area because there aren’t many
impediments in this dataset. Because labelling is so expensive, it is hard to
discover datasets with several people or obstacles. Additionally, data from the
Leon@Home Testbed [25], which includes location estimates determined by two
human trackers, has been gathered to assess service robots in a realistic home
context. Obviously, the aforementioned data is insufficient to train the suggested
detector.

3.1 Overview

Table 1 contains self-collected OpenField and MessyIndoor datasets for compar-
ing and evaluating the DW-SVDD leg detector. Additionally, because our team is
dedicated to using open-source datasets, this data will be posted on the GitHub
website along with any supporting materials, such as movies and rosbag data.

Table 1. Overview of Self-Collected Datasets

Dataset Topics OpenField MessyIndoor

Running Time 46.2 s 38.2 s

Humans Number 5 5

Obstacles Number 0 5

Topics: /scan 933 msgs 898 msgs

Topics: /odom 469 msgs 449 msgs

Topics: /leg clusters 926 msgs 885 msgs
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3.2 Training Dataset

Experiments in a multi-person setting are split into detection experiments and
following experiments in order to validate the DW-SVDD approach for socially
assistive tasks. As shown in Fig. 4, the man wearing a white shirt is the target
being followed, and the man wearing a black shirt is the target being inter-
fered with. As shown in Figs. 4a and 4b, the interfering target frequently creates
a barrier between the robot and the target being pursued in a multi-person
environment. When legs are too close together, the mobile robot interprets the
grouping of several legs as an incorrect goal and sets misleading data (Fig. 4c).
A control group of real data was also established (Fig. 4d).

4 Experiments of Leg Detection

4.1 SVDD Leg Detector vs DW-SVDD Leg Detector

SVDD and DW-SVDD leg detectors are evaluated on the Redmi laptop com-
puter, which is equipped with an Intel Core i5-10300H processor, 16 GB RAM,
an Nvidia GTX 1650 GPU, and an Ubuntu 20.04 operating system. All the con-
trastive methods are implemented in the ROS (Robot Operating System) and
do not employ any parallel acceleration optimization techniques.

The data in 3200 laser data samples was discovered to objectively examine
the recognition and detection of targets by mobile robots in a multi-person scene.
The training set from Fig. 4 is used to test the SVDD leg detector in Fig. 5. It is
obvious that the SVDD method’s excessive reliance on leg characteristics is the
reason why the detection results are inadequate.

Figure 5(a) shows that the robot only detects one human leg information
because the followed target is completely blocked. The robot only detects part
of the human leg information in Fig. 5(b). In Fig. 5(c), the distance between the
followed target and the interfering target is very close, detectors have difficulty
clustering these features into the following target. The control group in Fig. 5(d)
also demonstrated successful detection.

Figure 6 demonstrates how much more accurate and efficient our suggested
strategy is. The identification of laser point sequences in close proximity is made
easier since density information is taken into account. Figure 6(a) demonstrates
that the robot only picks up information about one human leg because all other
target information was lost. The DW-SVDD approach in Fig. 6(c) obviously
outperforms the SVDD method since it recognizes two targets as opposed to one
in Fig. 5(c). Additionally, Fig. 6(d) more clearly illustrates the test’s outcome.



Leg Detection for Socially Assistive Robots 97

Fig. 4. Training dataset: In a setting with multiple people, following and interfering
targets are moving about at various positions.

The quantitative evaluation results are shown in Table 2. We could conclude
that DW-SVDD leg detector has advantages over SVDD-based leg detector in
terms of multi-target classification. As for Area Under the Curve (AUC), the
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Fig. 5. The detection results of the SVDD leg detector for the four scenarios in Fig. 4.

Table 2. Comparing the Detection Results of SVDD and DW-SVDD Detectors

Leg Detector SVDD [14,17] DW-SVDD

Running Time 41.2 ms 47.0 ms

Number of Iterations 9 15

Average Lost Points 15 6

AUC 60.36% 73.41%

Variance of Distance and Radius (s2d−r) 19.21 12.30

DW-SVDD leg detector is 73.41%, which shows the higher accuracy of the detec-
tor. To describe the variance between the distance and radius, s2d−r is defined to
reflect the fluctuation of data:

s2d−r =
∑n

i=1

(
d

(
xi, x

k
i

) − r
)2

n
(10)

where the distance d
(
xi, x

k
i

)
and the radius r are described in Algorithm 1 and

Eq. (6), respectively.
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(a): Detection results in 4(a)

0 200 400 600 800

Number of lidar data points

0.5

1

1.5

2

2.5

3

S
ca

nn
in

g 
di

st
an

ce
(m

)

(b): Detection results in 4(b)
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(c): Detection results in 4(c)
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(d): Detection results in 4(d)

Fig. 6. The detection results of the DW-SVDD leg detector for the four scenarios in
Fig. 4.

4.2 DW-SVDD Leg Detector in Real-Time Robot Platform

This detector is practically implemented with a 2-wheeled mobile robot in order
to test the effectiveness of the DW-SVDD-based leg detector in a real-world
setting. To gather 2D range data, a LiDAR with a 360◦ measurement angle
(R2000, Pepperl+Fuchs GmbH, Germany) was put in the middle of the mobile
robot. It has a 360◦ scanning angle and a measurement range of up to 30 m.
With a measurement speed of 250 kHz and a scanning rate of 10 m/s, laser data
on the leg can be detected.

Leg Detection for Partial Occlusions. One interference target was intended
to pass through the target person and the robot in Fig. 7. The detector can
easily be shown to discriminate between the two targets despite the interference
target and the target after it being so close together that they are even partially
obscured. It should be noted that if a person’s legs are totally hidden, they
cannot be recognized. In this situation, the LiDAR is deprived of all knowledge
on the features of the human leg.
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Fig. 7. The DW-SVDD leg detector could be used by socially assistive robots to identify
partial occlusions. (a)(b) In blue box, the DW-SVDD leg detector could be able to
recognize both people in real-time if they are standing adjacent to the target. (c)(d)
The DW-SVDD leg detector also functions when someone passes by the target in blue
box. (Color figure online)

Leg Detection with Similar Obstacles. In Fig. 8, despite the close proximity
of the interference target and the target, even partially obscuring the target,
the detector can be seen clearly differentiating between the two targets. The
density weighting, which considers the distance between the legs and attempts
to separate legs with similar obstacles, makes this detection successful.

Table 3. Evaluation Results of Three Leg Detectors

Leg Detector LegDetector [24] SVDD [14,17] DW-SVDD

ID Switch 115 137 155

Miss 2371 msgs 2113 msgs 1474 msgs

FP 2294 msgs 2110 msgs 1890 msgs

MOTA 18.70% 27.41% 34.96%

MOTP 26.97% 37.02% 39.17%
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Fig. 8. The DW-SVDD leg detector could be used by socially assistive robots to identify
similar obstacles. (a)(b) In the blue box, the DW-SVDD leg detector might be able
to recognize both people in real-time if they are seated in similar obstacles. (c)(d)
MessyIndoor Dataset detection results. (Color figure online)

4.3 Leg Detection in CLEAR MOT Metrics

Due to a scarcity of publicly available code, we could only find an open-source
ROS-enabled leg detector package [23], which is based on the geometric con-
straints of legs.

The CLEAR MOT metrics [24] are adopted for the quantitative evaluation
of socially assistive robots. These metrics are commonly utilized for multi-object
tracking, and provide scorings of ID switches (IDk), misses (Missk), false pos-
itives (FPk), valid assignments, and precision of matchings cumulated from
every frame. These scores can be aggregated in multi-object tracking accuracy
(MOTA) score and multi-object tracking precision (MOTP):

⎧
⎨

⎩

MOTA = 1 −
∑

k(Ik+Missk+FPk)∑
k gk

MOTP =
∑

i,k d(xi,xk)∑
k ck

(11)

where gk is the ground truth annotations, ck is the number of matchings
between the estimated person and ground truth positions at time k. The distance
d (xi, xk) is described in Algorithm 1.

As shown in Table 3, results indicate that the MOTA and MOTP of the
proposed DW-SVDD leg detector achieved 34.96% and 39.17%, respectively.
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5 Conclusion

This study presents a DW-SVDD leg detector to detect, track, and follow human
targets using a LiDAR at leg height in a socially assistive robot. To improve the
leg detection performance for partial occlusions and similar obstacles in 2D range
data, the proposed leg detector integrates k-NN distance, density weight, and
support vector data description. Experimental results show that the DW-SVDD
leg detectoroutperforms the other two detectors, exhibiting superior clustering
and classification performance in a cluttered environment. Specifically, the pro-
posed leg detector achieved 34.96% and 39.17% for MOTA and MOTP, respec-
tively. However, there are limitations to the detector, as it falsely detects similar
obstacles in Fig. 8 due to not filtering out noise from distant laser points. In
addition, this leg detector fails to detect the target person who wears a long
skirt.

In future works, we plan to develop a stable and dependable socially assis-
tive system for mobile robots. This will involve using a high-performance robot
controller to test out a sensor fusion strategy, which will include running a
lightweight neural network-based detector. Overall, the DW-SVDD leg detec-
tor shows promising results and has the potential to be integrated into a more
comprehensive socially assistive scenario in the future.
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