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a b s t r a c t

In the dynamic and unstructured environment of human–robot symbiosis, companion robots require
natural human–robot interaction and autonomous intelligence through multimodal information fu-
sion to achieve effective collaboration. Nevertheless, the control precision and coordination of the
accompanying actions are not satisfactory in practical applications. This is primarily attributed to
the difficulties in the motion coordination between the accompanying target and the mobile robot.
This paper proposes a companion control strategy based on the Linear Quadratic Regulator (LQR) to
enhance the coordination and precision of robot companion tasks. This method enables the robot to
adapt to sudden changes in the companion target’s motion. Besides, the robot could smoothly avoid
obstacles during the companion process. Firstly, a human–robot companion interaction model based on
nonholonomic constraints is developed to determine the relative position and orientation between the
robot and the companion target. Then, an LQR-based companion controller incorporating behavioral
dynamics is introduced to simultaneously avoid obstacles and track the companion target’s direction
and velocity. Finally, various simulations and real-world human–robot companion experiments are
conducted to regulate the relative position, orientation, and velocity between the target object and the
robot platform. Experimental results demonstrate the superiority of this approach over conventional
control algorithms in terms of control distance and directional errors throughout system operation. The
proposed LQR-based control strategy ensures coordinated and consistent motion with target persons
in social companion scenarios.
© 2024 The Author(s). Published by Elsevier B.V. on behalf of ShandongUniversity. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Human–robot interaction has become an essential charac-
eristic of autonomous robots [1]. As a typical application of
uman–robot symbiosis, human-following robots have become
opular in fields, such as logistics handling [2], rehabilitation
ssistance [3], and elderly care [4]. This technology can effec-
ively alleviate the strain on medical resources and the rising
abor costs associated with an aging population. Human–robot
ollowing refers to the ability of a robot to actively respond to the
alking behavior of a target person in a dynamically shared en-
ironment, maintaining a safe following distance and proactively
voiding obstacles during movement, thereby assisting the target
erson in completing tasks.
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667-3797/© 2024 The Author(s). Published by Elsevier B.V. on behalf of Shandong U

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Currently, human–robot following primarily focuses on de-
tecting and tracking the target person, while less emphasis on
following control. Achieving safe and stable interactive collab-
oration in a symbiotic environment relies on practical control
algorithms. Furthermore, most studies of the following control
strategies concentrate on the trailing mode, where the robot
follows behind the person [5]. For example, Sun et al. [6] de-
signed a following control strategy based on the PID control
algorithm, which balances the safety and the comfort of the target
individual. Peng et al. [7] proposed an impedance-following con-
trol strategy based on human–robot companion dynamics. Yuan
et al. [8] proposed a control strategy based on artificial potential
fields, utilizing forces from potential fields to guide the robot
in following the target person while avoiding obstacles. How-
ever, studies on human walking behavior indicate that humans
prefer walking side-by-side, as this allows the robot to remain
within the human’s field of vision, thereby achieving higher social
acceptance [9,10].
niversity. This is an open access article under the CC BY-NC-ND license
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Researchers have extended this finding to human–robot fol-
lowing, proposing that a robot accompanying a person from the
side offers a more comfortable and natural interaction [11,12]. To
address this, Yao et al. [13] designed a following controller based
on the PID algorithm, which switches the robot from trailing to
side-following when turning corners. However, this strategy is
limited to specific scenarios like corridor corners. Xue et al. [14]
proposed a human–robot companion control strategy based on
a virtual tracking target. But it converts side-by-side following
to trailing, resulting in jerky and inaccurate robot-following tra-
jectories. Morioka et al. [15] and Hu et al. [16] introduced a
human–robot companion control based on a virtual spring model
to achieve compliant control of the target individual. Neverthe-
less, the control precision and stability of the virtual spring model
are poor, with considerable lag in control response, which can
lead to safety issues. To address the shortcomings of the virtual
spring model, impedance control, as a typical compliant control
method, ensures that the robot actively adapts to human motion
changes and maintains smooth robot movement. Tian et al. [17]
designed a motion controller model with adjustable impedance
control parameters, enabling the robot to actively maintain an
appropriate companion space. However, this force control algo-
rithm involves parameters that have complex nonlinear dynamics
between each other. Moreover, the companion above control
strategies often overlook a critical aspect of human–robot com-
panions: the coordination of movements between the robot and
the human.

Motion coordination of human–robot companionship is es-
sential for maintaining the stability of the side-by-side motion
formation, which refers to the stable matching of direction and
speed between the robot and the target person [18]. In real-
world scenarios, human motion is often irregular and dynamically
changing, significantly increasing the difficulty for the robot to
follow. To ensure the overall stability of the human–robot com-
panion system, the robot must be capable of real-time and accu-
rate perception, as well as fast response to the motion changes of
the target person. Therefore, enhancing the motion coordination
between the robot and the target person has become a critical
issue that needs to be addressed in the research and design of
human–robot companion control.

To ensure the safety of human–robot cooperation, robots must
have the ability of autonomous obstacle avoidance. Among tra-
ditional obstacle avoidance methods, the artificial potential field
method [19] is a classic approach widely applied in various sce-
narios. However, this method is prone to getting trapped in local
optima, which can limit its effectiveness. Morioka et al. [15] de-
signed an obstacle avoidance strategy based on the virtual spring
model, which achieves obstacle avoidance by establishing vir-
tual spring forces between the robot and obstacles. Nonetheless,
this method has a slow response time. However, these previous
studies of obstacle avoidance ignored the robots’ naturalness in
human–robot companions. Tian et al. [17] designed an obstacle
avoidance module for following robots using behavioral dynam-
ics, enhancing the naturalness of the robot’s obstacle avoidance
behavior by simulating human avoidance behavior. They vali-
dated the advantages of behavioral dynamics through simulation
comparative experiments. As such, the behavioral dynamic is pre-
ferred, which enables robot avoidance of obstacles by mimicking
human walk behavior. This paper integrated behavioral dynamics
into the Linear Quadratic Regulator (LQR) controller to enhance
the naturalness of the obstacle avoidance strategy, enabling the
robot to avoid obstacles by mimicking human walking behavior.

The main contribution of this paper specifically consists of the
following two parts:
2

Fig. 1. Kinematics model for the interaction between the accompanying target
and the mobile robot.

• This paper proposes a human–robot companion control
strategy based on the LQR. The strategy aims to enhance the
coordination of human–robot companion motion while en-
suring high accuracy and robustness of the control system,
thus addressing the deficiencies of other control strategies
in motion coordination. The proposed control strategy is
compared with traditional control algorithms through simu-
lations and real-world experiments, demonstrating superior
control performance on the specified evaluation metrics.

• Firstly, by analyzing the kinematic relationship between
the human and the robot during the companion process,
the human–robot companion model based on relative dis-
tance, relative bearing, and relative heading is established.
Secondly, leveraging the state–space equations of the hum-
an–robot companion system, the LQR-based companion con-
troller is designed to control the relative pose between
humans and robots while tracking the target person’s mo-
tion speed, thereby improving the motion coordination of
the human–robot. Finally, using behavioral dynamics mod-
els, an obstacle avoidance strategy for the companion robot
is designed to enhance the naturalness of robot obstacle
avoidance behavior by simulating human behavior.

2. Human-robot companion model

2.1. Robot kinematics model

In Fig. 1, the human-following robot is a two-wheeled
differentially-driven mobile robot. The coordinate systems are de-
fined as follows: XWOYW represents the world coordinate system,
XROYR represents the robot coordinate system, Q = [xr , yr , θr ] is
he mass center of the robot. Assume that the center of the robot’s
heel axle and mass are not aligned on the same horizontal
lane. Therefore, we define d as the distance between the robot’s
heel axis and its centroid. R = [xR, yR, θR] represents the
enter of the wheel axis. The control input vector ur = [vr , ωr ]

T

omprises the robot’s linear velocity vr and angular velocity ωr .
onsidering the requirements of physical elements, it is essential
o impose reasonable physical constraints on the control inputs of
he robot, i.e., |ur | ≤ umax

r , where umax
r = [vmax

r , ωmax
r ]

T represents
he maximum permissible control input values.

The differential-driven mobile robot adheres to nonholonomic
onstraints [20]. Therefore, its kinematics can be described as
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ollows:

ẋr
ẏr
θ̇r

⎤⎦ =

[cosθr 0
sinθr 0
0 1

][
vr
ωr

]
(1)

The position (xR, yR) of the reference point R can be expressed
by{
xR = xr + d cos θr
yR = yr + d sin θr

(2)

2.2. Human-accompanying model

Human–robot companionship refers to the scenario where a
robot accompanies a target person, moving in parallel with them
and maintaining a certain relative distance and bearing on the
person. In Fig. 1, the target person’s state is defined as Ph =

[xh, yh, θh, vh, ωh]
T , where (xh, yh) and θh represent the position

and heading angle of the target person, respectively. The terms vh
and ωh represent the forward and turning velocities of the target
person, respectively. Normal human walking motion generally
involves no lateral or longitudinal slipping, indicating that human
walking motion is subject to nonholonomic constraints. Thus, the
human-walking motion model [20] can be defined as:⎧⎨⎩ẋh = v̇h cos θh
ẏh = v̇h sin θh
θ̇h = ωh

(3)

Moreover, we define the state variables of the human–robot
companion system as χ = [ρ, α, β]

T .
The relative distance between the reference point R and the

target person is denoted as ρ, where ρ =

√
ρ2
x + ρ2

y . Based on
the geometric positional relationship between the mobile robot
and the target person, the projections of ρ on the X-axis and Y -
axis of the XWOYW can be obtained as ρx and ρy, respectively, as{
ρx = xh − xR = −ρ cos (α + θh)
ρy = yh − yR = −ρ sin (α + θh)

(4)

The bearing angle α represents the angle between the target
erson’s forward direction and the line between the robot and
he target person, as

= π + arctan(ρy/ρx) − θh (5)

The orientation angle β indicates the heading angle deviation
etween the robot and the target person, it can be described as

= θh − θr (6)

The desired state of the human-accompanying system is de-
oted as χd = [ρd, αd, βd]

T . Here, ρd represents the desired
ompanion distance, while αd = π/2 or αd = 3π/2 denote the
obot’s position on the target person’s left and right sides, respec-
ively. Additionally, setting βd = 0 ensures that the robot can
romptly respond to changes in the target person’s movement
irection. Based on the relative pose relationship between the
obot and the target person, as well as kinematic equations (1)
nd (2), the human–robot companion model can be derived as
ollows:

̇ =
[
ρ̇, α̇, β̇

]T (7)

here⎧⎪⎪⎨⎪⎪⎩
ρ̇ = vr cos γ − vh cosαr + dωr sin γ

α̇ =
1
ρ

(vh sinαr − vr sin γ + dωr cos γ ) − ωh

β̇ = ωh − ωr

γ = αd + βd

3

Fig. 2. Schematic diagram of the LQR-based human-accompanying controller.

y applying the Taylor series expansion and the forward Euler
ethod to linearize and discretize the system model (7), the

ollowing linear time-varying discrete state–space equations are
btained:

e(k + 1) = Ã(k)χe(k) + B̃(k)ue(k) (8)

here χe = χ − χd = [ρ − ρd, α − αd, β − βd]T represents
he error between the actual value and the desired value of the
ystem state, ue = [v − vh, ω − ωh]T represents the control input
eviation, the sampling period T and k represent the time step in
he operation system.

˜ =

[ 1 a12 a12
a21 a22 a23
0 0 1

]
, B̃ =

⎡⎣T cos γ Tdsinγ
T
ρd
sinγ T

ρd
dcosγ

0 −T

⎤⎦
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a12 = −Tvhsinγ + vhsinαd + dωhcosγ
a13 = −T (vhsinγ + dwhcosγ )

a21 = −
T
ρ2
d
[vhsinαd − vhsinγ + dwhcosγ ]

a22 =
T
ρd

[vhcosαd − vdcosγ − dwdsinγ ] + 1

a23 = −
T
ρd

[vdcosγ + dwdsinγ ]

3. LQR-based human-accompanying controller

3.1. Control system design scheme

Human–robot companion control aims to accurately regu-
late the relative pose between the robot and the target person.
To ensure motion coordination in human–robot companion-
ship, the robot must stably accompany variations in the target
person’s motion speed and direction. Furthermore, the robot
must autonomously evade obstacles throughout the human–
robot companion process to guarantee the target person’s safety.
Hence, the above control objectives can be delineated as follows:

lim
t→+∞

|χ − χd| = 0, lim
t→+∞

|ur − uh| = 0, ρob < ρo (9)

where ur = [vr , ωr ]
T , ρob represents the relative distance

between the robot and the obstacle, ρo represents the influence
range of the obstacle.

The proposed human–robot companion control strategy based
on the LQR is illustrated in Fig. 2. The human–robot compan-
ionship model is derived from the motion state of the target
person and the kinematic equations of the robot outlined in
the previous section. Based on this model, the cost function of
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he LQR is designed as a quadratic integral of the system state
rror and control input deviation. This approach facilitates precise
ontrol of the robot’s position while ensuring stable tracking
f the target person’s motion variations. An obstacle avoidance
trategy is devised using behavioral dynamics, enabling mapless
avigation for accompanying and avoiding obstacles. Addition-
lly, this study employs an electromagnetic localization module
o acquire the pose information of the target person. This mod-
le offers 360◦ surround detection, unaffected by obstacles or
nvironmental lighting conditions, presenting advantages over
ommonly used detection methods such as laser scanners and
tereo vision systems.

.2. LQR-based human–robot companion controller

We define the output of the human–robot companion
ontroller as follows:

r (k) = ud(k) + ue(k) (10)

here ud(k) and ue(k) are the feedforward controller and the
eedback controller respectively. The feedforward controller can
rive the robot to follow the target person without initial state
rrors and effectively enhance the system’s response speed and
rack accuracy. It is designed as ud = Kf uh, where Kf represents
the gain and uh represents the target person’s velocity. To achieve
the optimal motion coordination of the system, the expected
speed of the accompanying robot must be consistent with the
target person. Thus, Kf = 1, indicates the feedforward control
output is equal to ud = [vh, wh]T .

LQR is an optimal control strategy based on state feedback,
known for its robustness, stability, and ease of implementation.
It enables robots to achieve optimal motion control effects while
meeting specific performance criteria. Therefore, designing the
feedback control loop based on the LQR control strategy en-
hances the system’s control precision and human–robot motion
coordination [21]. To further improve the naturalness of the
accompanying control, An improved augmented state matrix is
defined:

ξ (k) =

[
χe(k)

ue(k − 1)

]
∈ R(m+n)×1 (11)

where n = 2 and m = 3 represent the dimensions of the
control input and the robot’s state variables, respectively. A new
augmented state–space equation can be expressed as follows:{

ξ (k + 1) = Āξ (k) + B̄∆ue (k)
η (k) = C̄ξ (k)

∆ue (k) = ue (k) − ue (k − 1) ∈ Rm×1

Ā =

[
Ã B̃
0 I

]
∈ R(m+n)×(m+n)

B̄ =

[
B̃
I

]
∈ R(m+n)×m

C̄ =
[
I 0

]
∈ Rn×(m+n)

(12)

According to Eq. (9), the cost function of LQR is defined as

J =

N∑
k=1

(
ξ TQ ξ + ∆uT

e R∆ue
)

(13)

where Q is the state weighting matrix, and R is the control input
weighting matrix. The first term represents the state error of
the human–robot companion system, used to achieve accurate
control of the robot’s companion position and to track the target
person’s movement direction. The second term represents the
change in the robot’s tracking speed of the target person during
the human–robot companionship process.
4

Solve the cost function (13) to obtain the optimal control, as:

∆u∗

e = −Kξ, K ∈ Rm×(m+n) (14)

where K =
(
R + B̄TPB̄

)−1
B̄TPĀ is the optimal gain matrix that

minimizes the cost function, P is a symmetric positive semi-
definite matrix that can be obtained by solving the Riccati
equation [22]. The general form of the Riccati equation is as
follows:

P = ĀTPĀ − ĀTPB̄
(
R + BT P̄B

)−1
B̄TPĀ + Q (15)

Based on Eqs. (14) and (15), the system’s optimal control
output ∆u∗

e can be obtained. Substituting this into Eqs. (10)
and (12) yields the optimal control output for the human–robot
companion system:

u∗

r (k) = ud (k) + ue (k − 1) − Kξ (16)

The human–robot accompanying system can obtain the optimal
control output through the above steps.

3.3. Obstacle avoidance based on behavioral dynamics

Natural obstacle avoidance capability requires the robot’s
obstacle avoidance behaviors to be closer to human’s natu-
ral behaviors. Current obstacle avoidance methods often ignore
human–robot interaction factors and neglect the naturalness
of the interaction process, which negatively impacts the social
acceptability of robots. To enhance the naturalness of robot obsta-
cle avoidance behavior during human–robot interactions, Fajen
et al. [23] have studied human avoidance behavior. It has been
found that both the direction and distance of obstacles relative to
a person jointly influence human avoidance behavior. Specifically,
humans primarily adjust their direction of movement to bypass
obstacles, with minimal adjustment to their walking speed. Fur-
thermore, the angular acceleration of human turning increases
as the obstacle’s azimuth angle decreases and the distance to
the obstacle decreases. This approach can effectively improve
the naturalness of robot obstacle avoidance. Furthermore, Tian
et al. [17] experimentally validated the effectiveness of this
method in human–robot companion obstacle avoidance. There-
fore, this paper will apply a companion robot control strategy by
combining obstacle avoidance based on behavior dynamics with
the LQR controller.

We define the relative distance between the robot and the
obstacle as ρob. The influence range of the obstacle is defined as
ρo = ro/Kob, where ro is the actual radius of the obstacle and
Kob is the ratio of the obstacle size to its influence range. When
ρob < ρo, it indicates that the robot has entered the obstacle’s
influence range. At this time, the obstacle avoidance output for a
single obstacle is:

Λob = −ηφe−c1|φ|e−c2ρob (17)

where Λob is the angular acceleration of the robot’s obstacle
avoidance output, φ is the bearing angle of the obstacle in the
XROYR coordinate system, η is the robot’s obstacle avoidance gain
coefficient; c1 is the obstacle bearing angle gain coefficient, c2
is the obstacle distance gain coefficient. Therefore, the obstacle
avoidance output can be defined as

u̇obi = [0, Λobi]T (18)

where the subscript i represents the index of obstacles within
the obstacle avoidance function’s operating range. Integrating
u̇obi yields the avoidance output matrix uobi. When the robot is

affected by Nob obstacles, the angular velocity control outputs
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xperimental parameters.
Parameters Value

Robot mass 40 kg
Wheel radius 0.07 m
Moment of inertia 0.08 (kg·m2)
Sample period 0.05 s
Q [25, 10, 25, 30, 30]T

R [20, 20]T
η 28
c1 1.5
c2 0.9
Kob 0.6
ρd 1 m
d 0.25 m
umax
r [1.5 m/s, 0.5π rad/s]T

generated by multiple obstacles can be summed to form the
output of the obstacle avoidance controller.

uob =

Nob∑
i=0

uobi (19)

ombining Eqs. (16) and (18), the final control input based on
QR and behavior dynamics for human–robot companionship and
bstacle avoidance strategy is

r (k) = ud (k) + ue (k-1) − Kξ + uob (20)

. Simulations and experiments

.1. Evaluation setup

The proposed companion control strategy was validated
hrough both simulation and real-world experiments. A set of
valuation metrics was designed to assess the controller’s perfor-
ance quantitatively. The simulation and real-world experiments
ere conducted using the same experimental parameters, as
hown in Table 1.
To quantitatively evaluate the control accuracy, smoothness of

ontrol output, and coordination of human–machine accompany-
ng movement for the proposed accompanying control strategy,
e define the following two evaluation metrics:

MSE =

√ 1
Ttask

Ttask∑
t=0

[χ (t) − χd(t)]2 (21)

where, Ttask represents the system operation time, χ (t) and χd(t)
denote the actual state of the robot and the desired state at time
t , respectively. RMSE is the root mean square error of [ρ, α, β].
This metric evaluates the accuracy of the system state variables
during the robot control process. The state variables ρ, α, and

will be assessed in subsequent measurements. Meanwhile, we
se the root mean square error of velocity (RMSV) to quantify the
elocity-tracking performance of the proposed method.

MSV =

√ 1
Ttask

Ttask∑
t=1

(ut − ud)
2 (22)

where ut represents the input of the robot at time t , and ud is the
desired companion velocity, which is the instantaneous speed of
the target person. This metric is used to evaluate the smoothness
of the control output and the robot’s motion coordination with
the target person’s velocity.

4.2. Simulation results

To validate the effectiveness of the proposed method, a simu-
lation experiment was designed in Fig. 3. The target person starts
5

from (3,3) and moves along the positive direction of the X-axis,
as indicated by the red trajectory in Fig. 3(a). Several different
starting points and initial poses were assigned to the robots to
execute either left-side or right-side companionship. The robot’s
starting points were set at (3,6), (0,5), (0,3), (0,1), and (3,0), as
indicated by the dashed trajectories in Fig. 3(a). The same color
trajectory indicates the same starting point but different initial
heading angles. Fig. 3(b) and (c) show the error curves of the
human–robot companion system state variables, with the colors
of these curves corresponding to their respective trajectories.
The results indicate that robots starting from different initial
states can effectively achieve human–robot companionship, with
the relative distance, relative bearing, and relative heading angle
between the robot and the target person quickly converging to
the desired values, preliminarily validating the effectiveness of
the proposed companion control strategy.

To further verify the comprehensive performance of the com-
panion control strategy, we designed an eight-shape trajectory
with both variable speed and direction. The equation of this
trajectory is{
x(t) =

10 sin(t) cos(t)
1+sin2(t)

+ 5

y(t) =
6 cos(t)

1+sin2(t)
− 3

(23)

s shown in Fig. 4(a), the target person moves along an 8-
haped trajectory, starting at (5,2), with time-varying linear and
ngular velocities to simulate dynamic changes in the real world.
n obstacle, represented by a gray solid circle, is positioned at
5.1,−1.8) with a radius of 0.15 m, and its influence range is
ndicated by the gray dashed circle with a radius of 0.4 m. The
obot started the companionship task from the right side of the
arget person. Additionally, the proposed LQR-based companion
ontrol strategy was compared with control methods based on
ID, Virtual Spring Model (VSM), and Impedance Control (IC).
In Fig. 4(a), the purple trajectory represents the robot’s path

sing the proposed LQR-based companion control strategy, while
he green, yellow, and pink trajectories represent the paths using
C, PID, and VSM control methods, respectively. Fig. 4(d) shows
he robot’s relative distance to the obstacle and the obstacle
voidance control output curve based on behavioral dynamics,
ith the purple dashed line indicating the obstacle’s influence
ange. When the robot enters the obstacle’s influence range,
he behavioral dynamics-based obstacle avoidance component
esponds by generating an avoidance control signal to adjust the
obot’s angular velocity and steer around the obstacle. Fig. 4(b)
resents the error curves of the human–robot companion system
tate variables. During obstacle avoidance, the PID, VSM, and IC
ethods exhibit large steady-state errors and significant fluctua-

ions in system state variables. Although all three methods can
ontrol the robot’s accompanying pose relative to the human,
hey fail to effectively stabilize the system state under significant
isturbances, such as deviations caused by obstacle avoidance,
eading to system oscillations. In contrast, the proposed con-
rol strategy demonstrates higher accuracy and stability. Even
hen significant deviations occur during obstacle avoidance, the
ystem state quickly reconverges, with smaller deviations and
luctuations than other methods.

Fig. 4(c) illustrates the curves of the velocity variation curves
f the robot and the target person. The black dotted lines indicate
he linear and angular velocity constraints. Under fixed parameter
imulation conditions, the VSM, PID, and IC methods also effec-
ively track the target person’s speed. However, these methods
xhibit significant oscillations and slow speed recovery during
bstacle avoidance. In contrast, when employing the LQR-based
ompanion control strategy, the robot smoothly tracks the target
erson’s speed changes.
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Fig. 3. Human–robot accompanying simulation experiment. The target person moved in a straight line trajectory along Y = 3; the robot achieved stable accompanying
ollowing at each starting point. (a) Trajectories. (b) Right trajectories state error. (c) Left trajectories state error.
able 2
uantitative simulation results of human–robot accompanying without obstacles
nd abrupt changes in the person’s motion.
Trajectory Method RMSE RMSV

ρ (cm) α (rad) β (rad) v (m/s) ω (mrad/s)

Linear LQR 0.001 0.005 0.000 0.001 0.016
PID 0.281 0.075 0.000 0.009 0.028
VSM 3.743 0.269 0.000 0.097 0.036
IC 4.371 0.094 0.000 0.184 0.020

8-shaped LQR 5.123 0.012 0.021 0.072 5.539
PID 5.579 0.068 0.031 0.175 5.555
VSM 13.873 0.380 0.135 0.077 35.750
IC 7.801 0.093 0.051 0.08 7.910

Circle LQR 0.038 0.006 0.003 0.050 0.773
PID 2.411 0.076 0.023 0.100 8.541
VSM 1.612 0.215 0.068 0.098 9.795
IC 3.410 0.096 0.021 0.087 6.541

Fig. 4(d) presents the obstacle avoidance output component
urve and the robot-obstacle relative distance curve. It can be ob-
erved that when the distance between the robot and the obstacle
as less than the obstacle’s influence range, an angular accelera-
ion component was generated. Even during obstacle avoidance,
here the superimposed effect of the avoidance output caused
ignificant fluctuations in the robot’s angular velocity, the strat-
gy responded quickly, enabling the system to reconverge to the
esired state rapidly. This comparison underscored the advan-
ages of the proposed LQR-based companion control strategy in
otion coordination performance and stability, demonstrating

ts superior suitability for handling dynamic changes in complex
nvironments compared to other methods.
Additionally, we conducted repeated companion simulation

xperiments with straight and circular target person trajectories,
nd the quantitative evaluation results are shown in Table 2.
ompared to other traditional algorithms, the proposed strat-
gy shows significant improvements in the accuracy evaluation
etrics RMSE and RMSV .
Compared to traditional control methods, the above simula-

ion results validate that the proposed control strategy ensures
igher accuracy of system state variables and more precise track-
ng of the target’s speed. In the simulation experiments with
omplex trajectories, the proposed control strategy, under ideal
onditions, improves the RMSE of ρ, α, and β by at average
5.86%, 88.76%, and 58.51%, respectively, and the RMSV of v and ω

by at average 25.12% and 38.27%, respectively, demonstrating the
excellent motion coordination of the proposed control strategy.
6

4.3. Real-world experiments results

To further validate the effectiveness of the proposed method
on a real robotic platform, we built an experimental setup as
shown in Fig. 5. Within the same local area network, we deployed
the algorithm computation on a laptop running MATLAB and the
execution on the robot’s onboard computer running the Robot
Operating System (ROS) through a master–slave communication
mode. The ROS data collection node receives control commands
from the algorithm computation side and drives the differential
robot chassis for companion motion. Additionally, an electromag-
netic tracking positioning sensor (Amfitech, Gen2, Denmark) is
installed on the robot as the signal transmitter, while the target
person wears the receiver. Based on the magnetic dipole model,
the alternating magnetic field generated by the transmitter is
analyzed, and the 3D pose data of the companion object is trans-
mitted via Bluetooth to the robot. The electromagnetic signal can
penetrate the human body, allowing stable tracking of the target
person’s pose even when obstacles are present. The receiver is
integrated into the robot to receive signals from the transmitter.

Depending on the application scenario, different sensing mod-
ules are used for obstacle position acquisition. The VICON optical
motion capture system ((Oxford Metrics Limited, Vero2.2, UK))
is used in indoor experimental settings. The robot is equipped
with infrared reflective markers recognizable by the VICON sys-
tem, enabling environmental perception and precise recording
of human–robot trajectories and obstacle positions. In outdoor
environments, a laser radar (Pepperl+Fuchs, R2000, Germany) can
detect obstacles and record the robot’s real-time position through
odometry.

In the first set of experiments, the target person walks along
a U-shaped trajectory within a global map, as shown in Fig. 6(a).
These experiments validate the motion coordination performance
of the robot’s autonomous companionship. The target person’s
speed accelerates and decelerates along the two straight seg-
ments, while at the turning points, the target person performs
approximately circular curved motions. Fig. 6(b) describes the
accuracy of the robot in system error correction. Even when
deviations occur due to abrupt changes in the target person’s
movement, the control system quickly reconverges, minimizing
the system state error and maintaining stability. Combined with
the LQR simulation data for straight and circular trajectories
shown in Table 2, this control strategy demonstrates high control
accuracy.

By evaluating the robot’s performance in real-world scenarios,
these experiments confirm that the proposed LQR-based compan-
ion control strategy can effectively maintain motion coordination
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Fig. 4. 8-Shaped trajectory experiment with obstacles for the human-accompanying robot in simulations. (a) Trajectories. (b) State error. (c) Control inputs. (d) uob
o ρo relationship.
t
c
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nd system stability, ensuring accurate and smooth tracking of
he target person’s movement.

Furthermore, Fig. 6(c) illustrates that throughout the experi-
ent, the robot successfully adapted to the target person’s move-
ent changes and maintained smooth speed tracking within the
peed constraint ±umax

r . Due to the randomness of human move-
ent, the target person’s speed curve tended to fluctuate during

he experiment. However, the robot responded quickly and ac-
ompanied the target person at the expected speed. The robot’s
ompanion motion remained relatively stable, with results simi-
ar to the simulation’s RMSV . The chart results indicate that this
ontrol strategy allows the robot to track the target person stably
hile maintaining accuracy, and achieving good motion coordi-
ation. This real-world validation complements the simulation
ata, highlighting the effectiveness of the proposed LQR-based
ompanion control strategy in dynamic environments. The robot
uickly adjusts to speed variations and trajectory changes, en-
uring seamless and stable companion movement. This aligns
ith the intention to enhance human–robot interaction by pro-
iding precise control and smooth motion coordination, which is
ssential for practical applications.
To further validate the performance of the proposed con-

rol strategy in complex scenarios, we conducted an experiment
here the target person followed an 8-shaped trajectory similar

o the one used in the simulation. As shown in Fig. 7(a), the

7

arget’s walking path approximates an inverted 8-shaped, with
ylindrical obstacles of radius ro = 0.4875 m placed at coordi-
ates (1.75, −9) and (5.15, −1.6), giving an obstacle influence
ange of ρo = 1.3 m. Furthermore, as shown in Fig. 7(d), at
times t1 = 10.3 s and t2 = 30.85 s, the distance between the
robot and the obstacles is completely within the influence range,
i.e., ρob < ρo. At these points, the robot simultaneously performs
obstacle avoidance while carrying out the companion task.

The system state error curves are shown in Fig. 7(b). Apart
from significant errors at t1 and t2 during obstacle avoidance
and turning points, the system error remains minimal through-
out the experiment, fluctuating around the expected zero value,
demonstrating system state accuracy.

Fig. 7(c) illustrates the control output. During the obstacle
avoidance and turning at t1 and t2, , there are sharp changes in
angular velocity. At other times, the robot maintains stable com-
panion motion while ensuring safe speed, demonstrating good
speed-tracking performance in obstacle avoidance scenarios.

This experiment confirms that the proposed LQR-based con-
trol strategy maintains high accuracy in system state variables
and ensures stable speed tracking and practical obstacle avoid-
ance. The robot’s ability to quickly adapt to dynamic changes
and maintain smooth motion coordination is crucial for practical

applications in complex environments.
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Fig. 5. Experiment setup for the human-accompanying system.
Fig. 6. Experiment of the robot human-accompanying along a U-shaped trajectory in an obstacle-free environment. (a) Trajectories. (b) State error. (c) Control inputs.
The evaluation metrics results from the two real-world exper-
ments (21)(22) are shown in Table 3. According to these results,
he robot under the proposed control strategy can effectively
dapt to sudden movements of the target person, maintaining
mooth and stable speed tracking with high accuracy. Even when
he target’s speed changes abruptly or when significant deviations
n the system state occur due to environmental disturbances, the
obot can quickly adjust and bring the system state error back
o the set value. This demonstrates that the proposed control
trategy has good motion coordination in real-world application
cenarios.

. Conclusion

This paper proposed a companion robot control strategy for
racking a target person in human–robot interaction scenarios
8

Table 3
Results of the physical experiment results.
Trajectory RMSE RMSV

ρ (m) α (rad) β (rad) v (m/s) ω (rad/s)

U-shaped 0.068 0.094 0.130 0.245 0.245
8-shaped 0.226 0.324 0.142 0.285 0.241

while enabling the robot to avoid obstacles autonomously. A
kinematic model of the companion robot system was established
based on a differential drive mobile robot experimental plat-
form, and the system state variables for the companion process
were defined. An LQR-based algorithm was developed to design
the companion system controller, ensuring that the robot could
maintain a stable and accurate relative position to the target
while adapting to changes in the target’s movement direction
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Fig. 7. Experiment of the human–robot companionship along an 8-shaped trajectory in an environment obstacles. (a) Trajectories. (b) State error. (c) Control inputs.
d) uob to ρo relationship.
nd speed. To address the need for the robot to navigate com-
lex environments during the companion process, the control
trategy integrated a behavior dynamics-based obstacle avoid-
nce approach that mimicked natural human obstacle avoidance
ehaviors. Initial validation of the proposed control strategy’s
erformance in human–robot companionship was conducted in
simulation environment. Under ideal simulation conditions,

ompared to other control strategies, the RMSE of ρ, α, and β

by at average 35.86%, 88.76%, and 58.51%, respectively, and the
RMSV of v and ω by at average 25.12% and 38.27%, respectively,
demonstrating the excellent motion coordination of the pro-
posed control strategy. Comparative experiments demonstrated
that the proposed strategy outperformed the Proportional PID,
VSM, and IC methods in terms of accuracy and coordination
of human–robot movement. Additionally, the feasibility of the
control strategy was quantitatively evaluated through obstacle
avoidance experiments on a real-world experimental platform.

In the control module, due to the strict parameter tuning
requirements of the LQR, neural networks will be employed
for parameter optimization to achieve adaptive parameter tun-
ing. In the decision-making module, since the desired state of
the companion system is manually set and cannot adapt to
sudden narrow terrains, strategies that consider environmental
information will be added for adaptive decision-making. These
improvements aim to enhance the practicality of the companion
control algorithm in complex application scenarios.
9
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