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Abstract— Human following for mobile robots has emerged
as a promising technique with widespread applications. To
ensure psychological comfort while collaborating, coexisting,
and interacting with humans, robots need to respect the social
space of the target person. In this study, we propose a dual
closed-loop human-following control strategy that combines
model predictive control (MPC) and impedance control. The
outer-loop MPC ensures precise control of the robot’s posture
while tracking the target person’s velocity and direction to
coordinate the motion between them. The inner-loop impedance
controller is employed to regulate the robot’s motion and
interaction force with the target person, enabling the robot to
maintain a respectful and comfortable distance from the target
person. Concretely, the social interaction dynamics character-
istics between the robot and the target person are described by
human-robot interaction dynamics, which considers the rules
of social space. Furthermore, an obstacle avoidance component
constructed using behavioral dynamics is integrated into the
impedance controller. Experimental results demonstrate the
effectiveness of the proposed method in achieving human
following and obstacle avoidance without intruding into the
intimate zone of the target person.

I. INTRODUCTION

A wide range of human-robot collaborative applications
exist in diverse domains, such as logistics, medical care, and
social activities [1]–[3]. Particularly, robots equipped with
human-following capabilities can reduce human workloads
and enhance overall efficiency [3]. However, it is insufficient
to merely treat the target person as a tracking object when a
human-following robot coexists and collaborates with a per-
son. Robots are expected to exhibit human-friendly behaviors
and adhere to socially acceptable norms, thereby enhancing
human comfort and facilitating broader acceptance [4].

Many state-of-the-art human-following control methods
[5]–[18] have yield impressive results. For instance, Zhang
et al. [5] employed PID control to design a vision-based
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Fig. 1. Diagram of socially accepted human-following behavior. The robot
follows the target person from behind and avoids obstacles while refraining
from intruding into the target person’s intimate zone.

target-following guide. Similar control methods were also
presented in [6]–[8]. Aye et al. [9] and Van et al. [10] ex-
tensively investigated fuzzy control-based human-following
controllers. Furthermore, Kastner et al. [12] proposed a deep
reinforcement learning-based agent for human following in
crowded environments. However, these methods concentrate
solely on the posture control of the robot relative to the target
person, overlooking the critical human factor in human-robot
interaction.

Research on spatiality in social interactions indicates that
humans unconsciously maintain appropriate social space
between themselves and others during interactions, fostering
respect for others and averting discomfort [19]. Proxemic
studies by Hall [20] have identified four interpersonal dis-
tances that govern social interactions: intimate (0-0.46 m),
personal (0.46-1.2 m), social (1.2-3.6 m), and public (>3.6
m). The intimate zone, spanning 0-0.46 m, represents an ex-
ceptionally sensitive space where individuals strive to evade
encroachment by others. This insight extends to human-robot
collaboration, where the robot must recognize and respect
the social space, thus aligning with more socially acceptable
behavior [21]. Especially, the robot must avoid intruding into
the target person’s intimate zone [4], as shown in Fig.1.

Correspondingly, Repiso et al. [22] proposed a social
force model-based social-awareness navigation framework
for accompanying humans that takes into account social
space rules. However, methods based on social navigation
often involve cumbersome parameter adjustments and could
be tricky to migrate onto different robots. Furthermore,
Herrera et al. [23] emphasized that ensuring individual
comfort requires considering not only social space but also
the dynamics during the interaction, i.e., treating these zones
as flexible potential areas, enabling the robot to achieve
natural and smooth motion for individual comfort. They
characterize these dynamics through an impedance control
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and governed the robot to maintain a comfortable distance
from the person. However, this approach lacked considera-
tion for controlling the robot’s heading angle and obstacle
avoidance, limiting its practicality. Subsequently, Tian et
al. [24] designed an impedance human-following controller
that included heading angle control and an obstacle avoid-
ance component, effectively addressing the deficiencies of
Herrera’s method [23]. Nevertheless, this method was only
validated through simulation. Impedance control is a typical
human-robot interaction control method that enables robots
to exhibit compliant behaviors, reduces the uncanny valley
effect, and enhances psychological comfort during interac-
tions [25]. However, it has limitations in terms of robustness
and accuracy. Additionally, none of the previously mentioned
methods can adequately handle the physical constraints of the
robot, potentially posing security risks in robot control.

To address these limitation, model predictive control
(MPC) is a preferred method due to its inherent advantages,
such as the ability to predict future states, generate opti-
mal control actions, handle explicit constraints, and demon-
strate excellent robustness. In previous studies [13]–[18],
researchers have extensively explored the application of MPC
in human-following tasks with commendable performance.
However, these methods disregard the target person’s interac-
tion experience and the robot’s social acceptance. To this end,
Sekiguchi et al. [4], [26] adopted MPC to control the relative
position of the robot and the target person, ensuring the
robot evades intruding into the target person’s intimate zone.
Nevertheless, this approach assumes that the speed of the
target person remains constant, which limits its practicality.
Additionally, MPC alone cannot establish compliant interac-
tion between the robot and the target person, resulting in a
lack of naturalness and comfort in human-robot interaction.

In response to these challenges, our work incorporates the
advantages of impedance control and MPC via a dual closed-
loop control structure. The outer-loop MPC ensures precise
control of the robot’s posture relative to the target person,
while tracking the velocity and direction of the target person
to coordinate their motion. Additionally, in the inner loop, we
design the human-robot interaction dynamics based on social
space rules to capture the social repulsion between the robot
and the target person. Then, dynamically regulates the robot’s
motion and interaction force by impedance control to achieve
compliant human-following behavior while respecting the
target person’s social space.

Furthermore, previous studies have often neglected the sig-
nificance of obstacle avoidance in the human-following task
(e.g., [6], [8], [23], [26]). Additionally, research on human-
robot interaction has revealed that similarity between robots
and humans in low-level behavior patterns can effectively
enhance the naturalness of the robot’s behavior, thereby
enriching the interaction experience for individuals and pro-
moting the social acceptance of robots [27]. Nonetheless,
conventional obstacle avoidance methods (e.g., [10], [14])
typically ignore this aspect. Therefore, behavioral dynamics
[24], [28] is preferred, which allows the robot to avoid
obstacles by emulating human walking behavior.

Fig. 2. Overview of the proposed scheme for the human-following control
strategy based on MPC and impedance control. Zones 1 and 2 are the
intimate zone and threshold zone of the target person, respectively. Zone 3
is the safe area of the obstacle.

The main contributions are summarized as follows:
1) Developing a dual closed-loop human-following con-

troller involves an outer-loop model predictive con-
troller for human following, a social space rules-based
human-robot interaction dynamics for generating inter-
action force, and an inner-loop impedance controller
for regulating robot motion and interaction force.

2) Integrating behavioral dynamics with the impedance
controller as an obstacle avoidance component. The
robot’s behaviors hence are further refined, rendering
the robot more natural and reflective of human-like
navigation and interaction.

II. SYSTEM OVERVIEW

As illustrated in Fig. 2, the proposed human-following
control scheme primarily consists of a dual closed-loop
human-following controller, human-robot interaction dynam-
ics, and behavioral dynamics. The dual closed-loop con-
troller, combining MPC and impedance control, is respon-
sible for executing the human-following tasks. The outer-
loop MPC governs the robot’s positional deviation to follow
the target person, while simultaneously tracking the target
person’s velocity and direction to ensure motion coordination
between the robot and the target person. Utilizing human-
robot interaction dynamics, a dynamic virtual interaction
force is established between the robot and the target person.
When the robot enters the threshold zone of the target person,
a repulsive interaction force is generated and applied to
the robot. Subsequently, the inner-loop impedance controller
enables the robot to maintain a respectful distance from the
target person by dynamically regulating the robot’s motion
and the virtual interaction force. This strategy prevents the
robot from intruding into the target person’s intimate zone
and enhances the compliance of the human-following con-
trol. Additionally, behavioral dynamics is integrated into the
impedance controller as an obstacle avoidance component,
enabling the robot to autonomously navigate an obstacle
avoidance trajectory without prior planning. Notably, we em-
ploy an electromagnetic tracking module to directly acquire
the position and orientation of the target person and a LiDAR
to detect obstacles, both of which are introduced in Section
V. The system operates in closed loop with perception and
control updates at 20 Hz.

11253

Authorized licensed use limited to: ShanghaiTech University. Downloaded on August 28,2024 at 04:42:33 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. Diagram of the human-following system model. R is the center of
mass, Q is the center of the wheel axis, and d is the distance between the
robot’s wheel axis and its centroid.

III. PROBLEM FORMULATION

A. Robot Motion Modeling

A differential-driven mobile robot is employed as the
human-following robot. Consequently, the robot’s kinematics
can be described as ẋr = vrcosθr, ẏr = vrsinθr, θ̇r =wr, where
(xr,yr) represents the robot’s position, and θr denotes its
orientation. vr and wr are the linear and angular velocities
of the robot, respectively. Furthermore, the dynamics of the
human-following robot can be defined according to [29], as

M̄u̇+C̄u = B̄τ, (1)

where u = [vr,wr]
T is the control input. τ is the robot’s

driving torques. Jr and m are the rotational inertia and the
mass of the robot, respectively. r is the radius of the wheels,
and l is the distance between the vehicle’s wheels,

M̄ =

[
m 0
0 Jr

]
, C̄ = 02×2, B̄ =

1
r

[
1 1
l −l

]
.

B. Human-Following System Model

The system schematic of human following is illustrated
in Fig. 3. The state of the target person is denoted as
[xh,yh,θh,vh,wh]

T , where (xh,yh) and θh are the position
and orientation of the target person, respectively. vh and wh
represent the forward and turning velocities of the target
person, respectively. The desired position of the human-
following robot is denoted as [xd ,yd ,θd ]

T , determined by the
desired relative position and orientation relationship between
the target person and the robot, as

xd = xh +ρdcos(αd +θh)

yd = yh +ρdsin(αd +θh)

θd = θh +βd

, (2)

where [ρd ,αd ,βd ]
T is the desired human-following system

state, signifying the separation, bearing, and orientation
between the target person and the robot, respectively. Then,
we can obtain the tracking error model [30]

Ẋe =

 0 wh 0
−wh 0 vh

0 0 0

xe
ye
θe

+

1 0
0 0
0 1

ue, (3)

where Xe = [xe,ye,θe]
T is the robot’s position error in the

robot body-fixed frame, xe = xr −xd , ye = yr −yd , θe = θr −
θd , and ue = [vhcosθe − vr,wh −wr]

T .

Fig. 4. Diagram of human-robot interaction dynamics.

Subsequently, we can obtain the time-varying discrete
linearized error model, as

Xe(k+1) = AXe(k)+Bue(k), (4)

where T is the sample period,

A =

 1 Twh(k) 0
−Twh(k) 1 T vh(k)

0 0 1

 , B =

T 0
0 0
0 T

 .

C. Human-Robot Interaction Dynamics

As depicted in Fig. 4, the human-robot interaction dy-
namics is developed based on social space rules [20], [31].
It utilizes non-physical forces to characterize the dynamic
interaction relationship between the robot and the target
person, assuming the existence of a hypothetical potential
field within the person’s intimate zone. If the robot enters
this zone during the human-following task, a repulsive force
can push the robot away from the intimate zone.

To ensure human comfort, we design a threshold zone
slightly larger than the intimate zone, with the desired
distance of the robot from the target person (ρd) set as
the radius of the threshold zone. As the relative distance
ρ between the robot and the target person becomes less than
ρd , a repulsive interaction force is applied, pushing the robot
away from that zone. The virtual interaction force can be
given by [23]

fr =

γ
e
− ρn

ρd −e−ρ
n−1
d

1−e−ρ
n−1
d

, ρ ≤ ρd

0, ρ > ρd

, (5)

where γ is denoted as gain, n is the order, and ρd is the
desired distance and the range of the interaction force. Then,
fr can be composed as

fs = [− frcosθhb,− frdsinθhb]
T , (6)

where fs = [ frv, frw]
T represents the components of fr in the

forward and rotational directions of the robot, respectively.
θhb is the azimuth angle of the target person in the robot
body-fixed frame.

IV. HUMAN-FOLLOWING CONTROL STRATEGY

As shown in Fig. 2, the proposed human-following control
strategy consists of a dual closed-loop structure based on
MPC and impedance control. Besides, the proposed method
incorporates behavioral dynamics for obstacle avoidance.
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A. Outer-Loop Model Predictive Controller
The task of MPC is to control the posture of the robot

relative to the target person while tracking the velocity
and direction of the target person to coordinate the motion
between them, i.e., limt→∞ |Xe| = 0, limt→∞ |ue| = 0. Thus,
the cost function of MPC can be formulated as

J =
N p

∑
i=1

∥Xe(k+ i|k)∥2
q +

Nc−1

∑
i=0

∥ue(k+ i|k)∥2
r , (7)

where Xe(k+ i|k) represents the position and direction de-
viation of the robot in the prediction horizon, ue(k + i|k)
denotes the control input in the control horizon, q and r are
the weight matrices, Np and Nc are the prediction horizon
and control horizon, respectively.

To ensure smoothness of control and to satisfy the physical
constraints of the robot, we impose constraints as umin ≤ u ≤
umax and ue(min) ≤ ue(k)≤ ue(max), respectively. Subsequently,
the cost function (7) can be reformulated in a normal
quadratic programming format, as

min
(Xe,U)

J(k) =
1
2

U(k)T HU(k)+Xe(k)T EU(k) (8)

s.t. umin ≤ u(k)≤ umax,ue(min) ≤ ue(k)≤ ue(max),

where U(k) = [ue(k|k), ...,ue(k+Nc −1|k)]T ,

E = Φ
T QΘ,H = Θ

T QΘ+R,Q =
Np
⊕

i=1
q(i),R =

Nc−1
⊕

i=1
r(i),

Φ =


A
A2

...
ANp

 ,Θ =


B 0 0 · · · 0

AB B 0 · · · 0
...

...
...

. . .
...

ANc−1B ANc−2B ANc−3B · · · B

 .

Solve (8) obtain the optimal control sequence U∗(k) and
use its first element as the control output u∗e(k). Then, we
can obtain model predictive control law of the outer-loop, as

uout(k|k) = ud(k|k)+u∗e(k). (9)

B. Inner-Loop Impedance Controller
The goal of the inner-loop impedance controller is to

establish a dynamic regulation between the robot’s motion
and the social force interacting with the target person. The
optimal output of the MPC serves as the reference input for
the inner-loop controller. The impedance control law is given
by [32]

Ĩζ̈e + B̃ζ̇e + K̃ζe = fs, (10)

where ζe := [sv − sd ,θr −θd ]
T denotes the displacement and

directional deviation of the robot, sv and sd represent the
real displacement and desired displacement of the robot,
respectively. I = diag(i, i), B= diag(b,b), and K = diag(k,k)
are inertia, damping, and elastic matrix, respectively. fs,
obtained from (6), is the virtual interaction force between
the robot and the target person.

Subsequently, according to the robot dynamics (1) and
the human-robot interaction dynamics (5), the inner-loop
impedance control law can be obtained as

τ = B̄−1M̄(u̇d + I−1( fs −Bζ̇e −Kζe)). (11)

C. Obstacle Avoidance Based on Behavioral Dynamics

The principle of behavioral dynamics is to emulate human
walking behavior, i.e., humans will adjust their walking
direction in advance to avoid obstacles and generally will not
have to adjust their forward speed [24], [28]. Therefore, this
method achieves obstacle avoidance by adjusting the angular
velocity of the robot. Let dob be the distance from the robot
to the obstacle and ds be the safe distance, then we have:

Λob =

{
−k0ψe−c1|ψ|e−c2dob , dob ≤ ds

0, dob > ds
, (12)

where Λob is the output of the obstacle avoidance component,
ψ is the orientation angle of the obstacle relative to the robot,
k0 > 0, c1 > 0, and c2 > 0 are gains.

Thus, we can obtain the obstacle avoidance control input
generated by i− th obstacle, i.e., u̇i

ob =
[
0,Λi

ob

]T . Assuming
that Nob is the number of obstacles, the inner-loop impedance
controller based on behavioral dynamics can be written as

τ = B̄−1M̄(u̇d + I−1( fs −Bζ̇e −Kζe)+
Nob

∑
i=1

u̇i
ob). (13)

V. SIMULATIONS AND EXPERIMENTS

A. Experimental Conditions

1) Experimental Setup: The simulation of the human-
following task was conducted in MATLAB 2021b. To
quickly validate the effectiveness of the proposed method
in a real-world experiment, we established a master-slave
network by connecting MATLAB to Robot Operating System
(ROS, noetic), as depicted in Fig. 6. The control algorithm
runs in MATLAB, and control commands are transmitted
from ROS to the robot’s actuator. Concurrently, ROS pro-
vides sensor data to MATLAB. The optimization problem
in MPC is solved using quadprog. Specifically, we employ
an electromagnetic tracking module (EMTM1) to directly
acquire the position and orientation of the target person and
a LiDAR to detect obstacles.

2) Evaluation Metrics: To quantitatively evaluate the
control strategy, we have defined the following met-
rics from the control perspective (a small value is pre-

ferred). a) Uncomfortable Time Tuc =
Ttask
∑

t=0
δt , δt ={

0 0.6 ≤ ρ ≤ 1.2
T ρ < 0.6 or ρ > 1.2

evaluates the robot’s ability to

refrain from intruding into the target person’s intimate zone
[4], where Ttask is the duration of a task. b) Motion Smooth-

ness MMMsm = 1/Ttask

Ttask
∑

t=0
∆u measures the smoothness of the

robot’s motion, where ∆u = [∆v,∆w]T is the control input

increments. c) Tracking Error EEEts =

√
1/Ttask

Ttask
∑

t=0
(ζζζ −ζζζ ddd)

2

assesses the tracking accuracy of the robot, where ζζζ :=
[ρ,α,β ]T is the system state.

1Amfitech. https://www.amfitech.dk/
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(a) Trajectories

(b) State error

(c) Control input increments

(d) Velocity

(e) fr and uob
Fig. 5. Simulation of human-following task and comparison with PID, impedance control (IC), and MPC. MPIC represents our proposed method. The
green dotted line in (a) is the desired trajectory of the robot, which is obtained from (2). Gray solid circle and gray dotted line in (a) represent the obstacle
and safety zone, respectively. In (b),

[
eρ ,eα ,eβ

]T := [ρ −ρd ,α −αd ,β −βd ]
T , and the blue zone and the pink zone represent the threshold zone and

intimate zone of the target person, respectively.

Fig. 6. Experimental setup. EMF: electromagnetic field, BT: Bluetooth.
The EMTM transmitter is mounted on the robot. The receiver is worn by the
target person. World coordinate determined by odometry. Vicon is utilized
to capture the trajectory of the target person and the robot.

TABLE I
QUANTITATIVE RESULTS OF SIMULATIONS

Methods Tuc [s] MMMsm EEEts

v[m/s] w[rad/s] ρ [m] α [rad] β [rad]

MPIC 0.0 0.162 0.248 0.074 0.098 0.435
MPC 1.6 0.286 0.471 0.158 0.204 0.544

IC 1.1 0.145 0.251 0.452 0.365 0.861
PID 3.8 0.263 0.513 0.325 0.294 0.692

B. Simulation Results

To validate the effectiveness and superiority of our pro-
posed method, we conducted a simulation experiment. As
illustrated in Fig. 5, we compared our proposed method with
PID, impedance control (IC), and MPC. The blue curves
(MPIC) in Fig. 5 represent the results obtained by our
proposed method. At t = 20s, as shown in Fig. 5, the robot
approached the target person’s intimate zone while bypassing

the obstacle. Notably, our proposed method successfully
avoided intruding into the target person’s intimate zone.
This accomplishment is evident in the tracking error eρ in
Fig. 5(b) and the interaction force fr in Fig. 5(e). Upon
entering the threshold zone of the target person, the robot
experienced a repulsive interaction force fr, preventing it
from intruding into the intimate zone. In contrast, all other
methods resulted in encroachment upon the target person’s
intimate zone. Additional, as indicated by tuc in Table I,
only MPIC is 0, which means our method enables the robot
to avoid psychological discomfort by respecting the target
person’s social space, a feat that the other methods failed to
achieve.

Furthermore, as illustrated in Fig. 5(c) and Fig. 5(d), our
proposed method provided stable and smooth velocity track-
ing of the target person. In Table I, the motion smoothness
MMMsm of our method is comparable to impedance control
but superior to other methods. This characteristic ensures
effective motion coordination between the robot and the
target person, improving the stability of the human-following
formation. Moreover, our method achieves smaller tracking
errors compared to the other methods. Notably, the error of β

is more obvious partly due to the effect of obstacle avoidance
and target person’s motion variations, on the other hand,
the control priority of orientation is lower, and its weight is
smaller. These results indicates that our method possesses the
compliance of impedance control coupled with the control
accuracy and robustness of MPC.

C. Real-World Experiment Results

To assess the practical applicability of our proposed
method, we conducted two sets of experiments using the
setup depicted in Fig. 6. The quantitative results of these
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(a) Trajectories (b) State error (c) Velocity (d) Interaction force
Fig. 7. Human-following experiment with motion mutations in the target person. The target person suddenly accelerates at t1 and decelerates at t2, turns
180° at t3, briefly steps back at t4 to approach the robot, and resumes forward at t5. The black arrow in (a) is the direction of the target person’s motion.

(a) Trajectories (b) State error (c) Velocity (d) fr and uob
Fig. 8. Experiment for human-following and obstacle avoidance. Gray solid circle and gray dotted line in (a) are obstacles and the safety zone, respectively.
The blue zone and pink zone in (b) are the threshold zone and intimate zone of the target person, respectively.

TABLE II
QUANTITATIVE RESULTS OF REAL-WORLD EXPERIMENTS

Experiment Tuc [s] MMMsm EEEts

v[m/s] w[rad/s] ρ [m] α [rad] β [rad]

Motion mutations 0.0 0.292 0.314 0.206 0.291 0.506
Obstacle avoidance 0.0 0.137 0.262 0.158 0.244 0.412

evaluations are summarized in Table II. In the first set of
experiments, we introduced variations in the velocity and
direction of the target person at t1 and t3, respectively. As
illustrated in Fig. 7(b) and Fig. 7(c), the robot effectively
adapted to these motion changes and maintained smooth
velocity tracking. Even in scenarios with significant devi-
ations in the system state due to the target person’s motion
mutations, our system rapidly reconverged while remaining
stable. Moreover, when the target person executed a 180°
turn at t3 and briefly stepped back at t4 to approach the robot,
the robot inadvertently entered the target person’s threshold
zone. However, the robot was promptly repelled by a repul-
sive interaction force, preventing further encroachment into
the target person’s intimate zone, as demonstrated in Fig.
7(b) and Fig. 7(d).

In the second set of experiments, the trajectory of the target
person closely resembled the simulation shown in Fig. 5. As
depicted in Fig. 8, the robot consistently followed the target
person, smoothly tracking the target person’s velocity while
effectively avoiding obstacles. When encountering obstacles
and in response to abrupt changes in the target person’s
motion, the system state experienced significant deviations.
However, the proposed method exhibited remarkable adapt-
ability, quickly re-converging the system to the desired state.
Additionally, when interaction forces were at play, the robot
demonstrated human-friendly behaviors by respecting the
target person’s social space. The robot successfully avoided

intruding into the target person’s intimate zone, as shown in
Fig. 8(b) and Fig. 8(d), which is also confirmed by Tuc = 0
in Table II. This capability enhanced the overall comfort
and acceptance of the robot during human-robot interactions.
These results affirm the effectiveness and robustness of our
proposed method in real-world scenarios, highlighting its
practical potential in human-robot collaboration.

VI. CONCLUSIONS

This study presents an effective dual closed-loop human-
following control strategy that enables the robot to respect
the target person’s social space, thereby improving the target
person’s comfort and promoting the robot’s social accep-
tance. The MPC-based outer-loop controller ensures accurate
and stable robot posture control and motion coordination
with the target person. Simultaneously, the human-robot
interaction dynamics based on social space rules is utilized to
capture the social repulsion between the robot and the target
person. The inner-loop impedance controller is designed
to dynamically regulate the robot’s motion and interaction
force. Thus, the robot maintains a comfortable and respectful
interaction distance with the target person while improv-
ing control compliance. Moreover, the impedance controller
integrates behavioral dynamics as an obstacle avoidance
component, enabling the robot to emulate the obstacle avoid-
ance behavior of humans. Experimental results demonstrate
the effectiveness and superiority of the proposed human-
following control strategy. The proposed approach in this
study promises to advance human-robot interaction by mak-
ing robots more adaptable and respectful in their interactions
with humans. In the future, we will consider the feelings
of pedestrians when following in crowded environments to
improve the social awareness of human-following robots.
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