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Abstract— Social robots have gained widespread attention for
their potential to assist people in diverse domains, such as living
assistance and logistics transportation. Human-accompanying,
i.e., walking side-by-side with a person, is an expected and
essential capability for social robots. However, due to the com-
plexity of motion coordination between the target person and
the mobile robot, the accompanying action is still unstable. In
this study, we propose a human-accompanying control strategy
to improve the motion coordination for better practicability
of the human-accompanying robot. Our approach allows the
robot to adapt to the motion variations of the target person and
avoid obstacles while accompanying them. First, a human-robot
interaction model based on the separation-bearing-orientation
scheme is developed to ascertain the relative position and orien-
tation between the robot and the target person. Then, a human-
accompanying controller based on behavioral dynamics and
model predictive control (MPC) is designed to avoid obstacles
and simultaneously track the direction and velocity of the
target person. Experimental results indicate that the proposed
method can effectively achieve side-by-side accompanying by
simultaneously controlling the relative position, direction, and
velocity between the target person and robot.

I. INTRODUCTION

Social robots for human-robot collaboration are widely
employed in diverse domains, such as companionship [1],
transportation [2], medical care [3], and geriatric care [4].
Accompanying a person side by side is an essential capability
for robots in these applications, as it provides a more natural
and comfortable mode for human-robot interaction [5], as
shown in Fig. 1.

How can the robot accompany a person side by side?
Generally, accompanying a person side by side involves
controlling the relative position of the robot to the target
person, i.e., achieving a position of 90° toward the person
and maintaining a safe distance while avoiding obstacles
[6]. Some advanced human-accompanying control methods
[7]–[11] have accomplished these tasks with satisfactory
performance. However, these methods could not steadily and
accurately coordinate the motion and actions between the
target person and the robot, which is crucial for achieving
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Fig. 1. Some side-by-side accompanying applications. (a) Our robot
accompanies the person shopping. (b) Unitree Go1 [1] accompanies the
person running. (c) Wheelchair robot [3] for nursing care.

true accompanying behavior. Motion coordination in human-
accompanying behavior refers to the robot’s ability to track
the direction and velocity of the target person to sustain
the stability of the side-by-side formation [12]. Moreover,
the direction and velocity of humans during walking are
irregular, especially in dynamic environments. Thus, the
robot is required to adapt to the variations in the direction
and velocity of the target person, which leads to the side-by-
side accompanying being more challenging to control than
the following from behind [9].

In this study, we aim to design a side-by-side accompa-
nying control strategy to improve the motion coordination
between the robot and the target person while accurately
controlling the relative position and direction between them.
Our approach allows the robot to adapt to variations in the
direction and velocity of the target person, enhancing the
stability and practicability of human-accompanying robots.

A. Related Work

Most studies focused on human-following control, i.e.,
following the person from behind, with impressive results,
e.g., PID [13], fuzzy control [14], impedance control [15],
and reinforcement learning [16]. However, only a few studies
focused on the side-by-side accompanying, whereas there
was limited accompanying performance [17]. Therefore, a
reliable side-by-side accompanying control strategy remains
to be investigated. To this end, Morioka et al. [18] proposed
the virtual spring model to absorb the kinematic difference
between the human and the robot, but its convergence cannot
be guaranteed. Yao et al. [10] designed a PD controller to
accompany the person side-by-side to expand the robot’s
field of view and avoid the target being obscured by walls.
However, this approach cannot adapt to the velocity varia-
tions of the target person. Xue et al. [19] proposed a human-
accompanying control strategy based on a virtual tracking
target, which essentially converts side-by-side accompanying
into following from behind. However, the control accuracy
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of this approach is unexceptional. Besides, these methods
ignore obstacle avoidance and the physical constraints of the
robot, which pose a potential security risk to the robot.

Furthermore, integrating side-by-side accompanying into
the navigation framework is a common strategy. Morales et
al. [6], [20] constructed a utility-based human-accompanying
model by analyzing the characteristics of two people walking
side-by-side. Ferrer et al. [21] proposed a social force model-
based human-awareness navigation framework, expanded by
Repiso et al. [9], [22] to accompany groups of people. How-
ever, these methods have a common problem of cumbersome
parameter rectification and could be tricky to migrate on
different robots.

To address these shortcomings, model predictive control
(MPC) is a preferred method due to its inherent advantages,
such as the ability to predict future states and output optimal
control actions, handle explicit constraints, and its excellent
robustness. Edmonds et al. [23] and Ashe et al. [24] adopted
MPC to track the path taken by the target person and
maintain a safe distance from the person. However, this
method only applies to following from behind, as following
from a different angle requires the robot to move on a
different path than the human. Yan et al. [8] utilized MPC
to track a trajectory that maintains a lateral distance from
the patient’s predicted trajectory without considering obstacle
avoidance. Sekiguchi et al. [11] proposed an uncertainly-
aware companion robot controller based on nonlinear MPC
and probabilistic movement primitives to achieve natural
human-accompanying. However, this approach assumes that
the target person’s velocity is constant, yielding limited
practicality. Therefore, in this study, we propose an MPC-
based control strategy to control the relative position between
the target person and the robot while tracking the direction
and velocity of the target person.

In addition, obstacle avoidance in the human-
accompanying task is unavoidable. However, it has
been ignored in many previous studies (e.g., [8], [10],
[11], [18], [19]). Moreover, some previous studies have
noted obstacle avoidance [23], [24] but ignored the robots’
naturalness in human-robot interaction (HRI). Fortunately,
research on HRI indicates that robots’ naturalness could be
improved by mimicking human behavior [25]. As such, the
behavioral dynamic [26] is preferred, which enables robot
avoidance of obstacles by mimicking human walk behavior.

B. Contributions

The main contributions are listed as:
1) A human-robot interaction model is developed based

on the separation-bearing-orientation scheme to ascer-
tain the relative position and orientation between the
robot and the target person.

2) A human-accompanying controller based on MPC is
designed to simultaneously control the relative posi-
tion, direction, and velocity between the target person
and the robot.

3) Behavioral dynamics are integrated into the controller
as an obstacle avoidance component, enabling the

Fig. 2. Overview of the proposed scheme for the human-accompanying
robot. The human-accompanying controller (HAC) is a feedforward-
feedback. Behavioral dynamics are adopted for obstacle avoidance. An
electromagnetic tracking module (EMTM) directly acquires the position and
orientation of the target person. TF: the transformation of coordinates.

robot to mimic human obstacle avoidance behavior to
improve the robot’s naturalness.

II. SYSTEM OVERVIEW
Our human-accompanying scheme, as shown in Fig. 2,

mainly consists of a human-robot interaction model, a
human-accompanying controller (HAC), and a wireless elec-
tromagnetic tracking module (EMTM). The EMTM1 receiver
is worn on the target person to receive the electromagnetic
field from the transmitter mounted on the robot. Then, the
high-precision position and orientation between the transmit-
ter and receivers, i.e., the target person and the robot, can be
directly acquired by the unique AmfiTrack1 embedded algo-
rithms. Subsequently, the high-frequency noises are filtered
out using a moving average filter, and the position and orien-
tation of the target person are converted to the global coor-
dinate system. Next, the non-holonomic human walk model
can calculate the target person’s velocity, and the human-
robot interaction model can ascertain the kinematic states
of the human-accompanying system. Additionally, LiDAR
is utilized to detect obstacles. Afterward, the HAC based on
behavioral dynamics and MPC is adopted to produce control
commands for the robot. Finally, these commands are then
executed by the robot to drive it to accompany the target
person while avoiding obstacles. The system operates in a
closed loop, with perception and control updates at 30 Hz.

III. HUMAN-ROBOT INTERACTION MODEL

In this section, we formalize the relative position and
orientation relationship between the robot and the tar-
get person. Then, the kinematic states of the human-
accompanying system are ascertained for the design of the
human-accompanying controller.

A. Non-holonomic Human Walk Model

We denote the target person’s state as [xh,yh,θh,vh,wh]
T :

ẋh =
xh(t+τ)−xh(t−τ)

2τ
, ẏh =

yh(t+τ)−yh(t−τ)
2τ

θ̇h = tan−1(ẏh/ẋh)

v̇h =
√

ẋ2
h + ẏ2

h, ẇh =
θh(t+τ)−θh(t−τ)

2τ

, (1)

1Amfitech. https://www.amfitech.dk/
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Fig. 3. Schematic of human-robot interaction model. ρ is the distance
between the robot and the target person, α is formed by the red connection
line and the human orientation, and the relative orientation is β = θh −θr .

where (xh,yh) and θh are the target person’s position and
orientation, respectively. vh and wh represent the forward and
turning velocities of the target person, respectively. τ is the
sample period.

In the normal human walking pattern, the person moves
strictly forward without lateral and longitudinal sliding,
which leads to a non-holonomic model [27]. Thus the
person is subject to the non-holonomic constraint: ẏhcosθh−
ẋhsinθh = 0. Therefore, the target person’s walk model can
be given by

ẋh = vhcosθh, ẏh = vhsinθh, θ̇h = wh. (2)

B. Interaction Model

The kinematics of the robot is denoted as ẋr =
vrcosθr, ẏr = vrsinθr, θ̇r = wr, where (xr,yr) and θr are the
robot’s position and orientation, respectively. vr and wr are
the linear and angular velocities, respectively. The control
input is u ∈ {u | |vr| ≤ vm

r , |wr| ≤ wm
r }, where vm

r and wm
r are

the limits of linear and angular speed, respectively.
The schematic of the human-robot interaction model is

given in Fig. 3, which shows that the robot accompanies
the target person with a separation ρ , a relative bearing α ,
and a relative orientation β . Therefore, we define the state
of the human-accompanying system as ζ := [ρ,α,β ]T . Then
we can obtain the human-robot interaction model, as

ζ̇ =

ρ̇

α̇

β̇

=

 vrcosγ − vhcosα +dwrsinγ
1
ρ
(vhsinα − vrsinγ +dwrcosγ)−wh

wh −wr

 , (3)

where γ := α + β , d represents the distance between the
mass of the center and the robot’s front, and the kinematics
of the target person can be obtained by (2). Moreover, the
robot’s position relative to the target person can be adjusted
by controlling the α , which equals π/2 or 3π/2 if the robot
accompanies the human on the side. If β converges to zeros,
the robot tracks the direction of the target person.

Linearizing (3) with the Taylor series and then performing
forward differencing yields the linear discrete model

ζ̃ (k+1) = Ãζ̃ (k)+ B̃ũ(k), (4)

where ζ̃ := ζ − ζd = [ρ −ρd ,α −αd ,β −βd ]
T is the er-

ror with respect to the desired states and ũ := u − ud =
[v− vd ,w−wd ]

T is its associated perturbation control input,

Ã =

 1 a12 a13
a21 a22 a23
0 0 1

 , B̃ =

 τcosγ τdsinγ

− τ

ρd
sinγ

τ

ρd
dcosγ

0 −τ

 ,

a12 = τ(−vdsinγ + vhsinαd +dwdcosγ),

a13 =−τ(−vdsinγ +dwdcosγ),

a21 =− τ

ρ2
d
(vhsinαd − vdsinγ +dwdcosγ),

a22 =
τ

ρd
(vhcosαd − vdcosγ −dwdsinγ)+1,

a23 =− τ

ρd
(vdcosγ +dwdsinγ).

IV. HUMAN-ACCOMPANYING CONTROL STRATEGY

A. Control Scheme

The task of accompanying human control is mainly to
control the relative position of the robot and the target
person while the robot should be able to track the direction
and velocity of the target person, i.e., limt→∞ |ζ −ζd | =
0, limt→∞ |u−ud |= 0.

Therefore, the human-accompanying control law can be
designed using the perturbation control input ũ = u− ud in
the following manner

u(k) = ud(k)+ ũ(k), (5)

where ud(k) and ũ(k) represent the feedforward output and
the feedback output, at the moment k, respectively. Feedfor-
ward output is the velocities that the robot needs to reach,
which can be designed as ud(k) = K f uh(k), where uh(k) can
be obtained by (1), and K f denotes gain.

Feedback command generation is based on the state error
of the human-robot interaction system that drives the robot
to move to the desired position. Moreover, the control
increments of the robot are also considered in the feedback
loop to ensure the smoothness and safety of the human-
accompanying control. Therefore, we employ MPC to design
the feedback controller.

B. Model Predictive Controller

The incremental state-space expression is{
δ (k+1|k) = Āδ (k|k)+ B̄∆ũ(k|k)
η(k|k) = C̄δ (k|k)

, (6)

where δ (k|k) :=
[
ζ̃ (k|k), ũ(k−1)

]T
∈ R(m+n)×1 is the in-

cremental space state vector, ∆ũ(k|k) := ũ(k|k)− ũ(k−1) ∈
Rm×1 is the control input increment, m and n represent the
dimensions of the robot’s state and control inputs, respec-
tively.

Ā =

[
Ã B̃
0 I

]
∈ R(m+n)×(m+n), B̄ =

[
B̃
I

]
∈ R(m+n)×m,

C̄ =
[
I 0

]
∈ Rn×(m+n).

7971

Authorized licensed use limited to: ShanghaiTech University. Downloaded on August 28,2024 at 04:32:10 UTC from IEEE Xplore.  Restrictions apply. 



The cost function can be designed as

J =
Np

∑
i=1

||ζi −ζd ||2q +
Nc−1

∑
i=0

||∆ũi||2r +σε
2, (7)

where Np and Nc are the prediction and control horizon,
respectively, and Np ≥Nc ≥ 1. q> 0 and r > 0 are the weight
matrices. ∥ · ∥2 represents two-norm. To avoid infeasibility,
we introduce a slack variable M > ε > 0,M ∈ R+.

Considering the smoothness of the control and the require-
ments of the physical elements, the control incremental input
constraints are introduced. The constraints on the control
inputs can be described as umin ≤ u ≤ umax. The control
increment constraints are defined as ∆ũmin ≤ ∆ũ ≤ ∆ũmax.
Therefore, we can rewrite the cost function (7) using the
normal quadratic programming format, as

min
X(k)

J(k) =
1
2

XT (k)H(k)X(k)+FT (k)X(k), (8)

s.t. umin ≤ u ≤ umax, ∆ũmin ≤ ∆ũ ≤ ∆ũmax,

where X(k)= [∆U(k),ε(k)]T ,∆U(k)= [∆ũk, · · · ,∆ũk+Nc−1]
T ,

H(k) =
[

2(ΘT
k QΘk +R) 0

0 2σ

]
,Q =

Np
⊕

i=1
q(i),R =

Nc−1
⊕

i=1
r(i),

F(k) =
[
(2δ

T (k|k)ΦT
k QΘk)

T ,0
]T

,Λi
k = C̄ĀiB̄(k),

Φk =


C̄Ā
C̄Ā2

...
C̄ĀNp

 ,Θk =



Λ0
k 0 · · · 0

Λ1
k Λ0

k+1 · · · 0
...

...
. . .

...
Λ

Nc−1
k Λ

Nc−2
k+1 · · · Λ0

k+Nc−1
...

...
. . .

...
Λ

Np−1
k Λ

Np−2
k+1 · · · Λ

Np−Nc
k+Nc−1


.

The solution of optimal control inputs obeys the receding
horizon principle at every sampling time k:

∆ũ∗(k) = [In×n 0 · · · 0]1×Nc
∆Ũ∗(k), (9)

where n is the number of control input dimensions, I is the
unit matrix. Then we can obtain the human-accompanying
control law, as

u(k|k) = ud(k|k)+ ũ(k−1)+∆ũ∗(k). (10)

C. Behavioral Dynamics-based Obstacle Avoidance

Behavioral dynamics mimic human walking behavior, i.e.,
humans will adjust their walking direction in advance to
avoid obstacles and generally will not have to adjust their
forward speed [15]. Therefore, this method achieves obstacle
avoidance by adjusting the angular velocity of the robot.

Assume that dob is the distance from the robot to the
obstacle and ds is the safe distance, then we have:

θ̈ob =

{
−k0ψe−c1|ψ|e−c2dob , dob ≤ ds

0, dob > ds
, (11)

where θ̈ob is the angular acceleration in obstacle avoidance,
ψ is the orientation angle of the obstacle relative to the robot,
k0 > 0, c1 > 0, and c2 > 0.

Integrating (10) yields the obstacle avoidance component

uob = [0 wob]
T . (12)

Thus, the effects of multiple obstacles can be super-
imposed. We can hence obtain the human-accompanying
control law with obstacle avoidance:

u = u(k|k)+uob. (13)

V. SIMULATIONS AND EXPERIMENTS

In this section, the proposed side-by-side accompanying
control strategy is validated and evaluated in simulation and
physical environments with a differential-driven robot and
compared with the PID-based side-by-side accompanying
control strategy.

A. Simulation Results

The simulation of the side-by-side accompanying is per-
formed in Matlab 2021b, and the optimization problem in
MPC is solved by quadprog2. At first, we utilize simple
linear and circular trajectories to verify the effectiveness of
the proposed method, as shown in Fig. 4. The robot can
maintain a side-by-side formation with the target person
while steadily tracking the direction and velocity of the target
person. Moreover, the robot is able to quickly respond to
abrupt changes in the target person’s motion and smoothly
converge back to equilibrium.

(a) Linear trajectory (b) Velocity

(c) Circular Trajectory (d) Velocity

Fig. 4. Human-accompanying performance in simulations. (a) The target
person moves with uniform velocity in a straight line, with the linear velocity
suddenly increasing at t1 and suddenly decreasing at t2. (c) The target person
moves in a uniform circular motion, with a sudden increase in velocity by
twice at t1. The green dashed lines in (a) and (c) are the line connecting
the position of the robot and the target person at a given time. (b) and (d)
is the velocity curves of the robot (blue) and the target person (red), and
the black dotted line is the upper boundary.

2quadprog. https://www.mathworks.com/help/optim/ug/quadprog.html
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(a) Trajectories (b) State error (c) Velocity (d) Control inputs increment

Fig. 5. Simulation for side-by-side accompanying with time-varying linear and angular velocities. At t1 and t2, the robot bypasses the obstacle from
different directions, respectively. (a) The solid gray circle is the obstacle and the black dashed circle is the safety range. (c) The red dotted lines and the
blue lines are the target person’s velocity and the robot’s velocity, respectively. (c)-(d) The black dotted line is the upper and lower boundaries.

TABLE I
QUANTITATIVE RESULTS OF SIMULATION WITHOUT OBSTACLES AND

ABRUPT CHANGES IN THE PERSON’S MOTION

Trajectory Method
RMSE RMSV

ρ [m] α [rad] β [rad] v [m/s] w [rad/s]

Linear
MPC 0.00 0.02 0.00 0.08 0.00
PID 0.14 0.30 0.00 0.19 0.00

8-shaped
MPC 0.03 0.04 0.01 0.06 0.00
PID 0.11 0.15 0.04 0.11 0.07

Furthermore, we designed a complex 8-shaped trajectory
with time-varying linear and angular velocities and set ob-
stacles. Fig. 5(a) shows the robot’s trajectory for avoiding
obstacles while accompanying the target person. The robot
can achieve a 90° angle toward the target person (α) and
maintain a safe distance from the target person (ρ) while
tracking the direction of the target person (β ), as shown in
Fig. 5(b). Furthermore, the robot adjusts its heading angle
to avoid obstacles and can quickly reconverge to the desired
state, as shown at t1 and t2. As depicted in Fig. 5(b)-(d),
despite the target person’s velocity constantly changing, the
robot is still able to track that velocity steadily, and the con-
trol inputs can also maintain within the predefined security
bounds. On the other hand, the human-accompanying system
state is almost unaffected.

Besides, we quantitatively evaluate the proposed method
with a comparison to the PID-based side-by-side accompany-
ing. The velocity of the target person in different experiments
is the same without obstacles and abrupt changes in the
person’s motion, and the results are shown in Table I. RMSE
is the root mean square error of [ρ,α,β ]T . Meanwhile,
we use the root mean square velocity (RMSV) to quantify
the velocity-tracking performance of the proposed method.
RMSV =

√
1
j ∑

j
i=1 (ũi)2, where j is the sample size of

the velocity error ũi. Obviously, the proposed method can
achieve more precise and stable relative position control
and velocity tracking, and the control is more smooth. The
reasons lie, on the one hand, the error of the relative position,
direction, and velocity between the target person and robot
are integrated into the cost function simultaneously. On the

Fig. 6. Experiment setup for the human-accompanying system. EMF:
electromagnetic field. BT: Bluetooth. The EMTM transmitter is mounted
on the robot. The receiver is worn by the target person.

other hand, benefiting from the inherent advantages of MPC,
such as the ability to predict future states and output optimal
control actions and its excellent robustness. Specifically, the
system in (3) is a multi-input multi-output system and the
states are coupled, thus a control method such as PID cannot
effectively handle the state control of that system.

B. Real-World Experiments Results

The proposed control strategy is implemented on a
differential-driven robot, which is installed with EMTM and
LiDAR to acquire the target person’s posture and detect
obstacles, respectively, as shown in Fig. 6. The key features
of EMTM versus other sensors (e.g., cameras, LiDAR,
and UWB) are full six degrees of freedom tracking, high
accuracy, low cost of system components, easy installation,
and no line-of-sight problems [28]. Moreover, all the al-
gorithms are integrated with the Robot Operating System
(ROS, noetic) and performed online on the robot’s onboard
computer (Intel i5-11600 CPU). The optimization problem
in MPC is solved by OSQP3 with a computational rate of
approximately 200Hz. The trajectory of the target person and
the robot is captured by Vicon.

3OSQP. https://osqp.org/
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(a) Trajectories (b) State error (c) Velocity (d) Control inputs increment

Fig. 7. Experiment for accompanying side-by-side. At t1, the robot approaches the target person to avoid obstacles. At t2, the robot bypasses the obstacles
in a direction away from the target person. (a) The solid gray circle is the obstacle and the black dashed circle is the safety range. (c) The red and blue
lines are the target person’s velocity and the robot’s velocity, respectively. (d) The control input increment is the optimal solution output ∆ũ∗.

(a) Trajectories (b) Heading angle (c) Velocity (d) Control inputs increment

Fig. 8. Abrupt changes in the direction of the target person. t1 − t2 and t3 − t4: The target person’s velocity changes continuously. t2 − t3 and t4 − t5: The
target person’s direction changes 180° in a short period. t5 − t6: The speed and direction of the target person are kept constant.

The experimental results for side-by-side accompanying
are shown in Fig. 7, where the trajectory of the target
person is similar to that in the simulation in Fig. 5. As
shown in Fig. 7(b) and (c), the bearing angle α and the
relative orientation β are almost unaffected by variations in
the velocity of the target person, and the distance between
the robot and the target person ρ fluctuates within a tight
range. The system state only deviates significantly when
the robot avoids obstacles and can quickly reconverge to
the desired state, as shown at t1 and t2. Consequently, our
method enables stable and accurate control of the relative
position between the robot and the target person and effective
obstacle avoidance. Furthermore, the robot can smoothly
track the target person’s time-varying direction and velocity,
and adapt to the variation in the target person’s motion, which
improves the motion coordination between the target person
and the robot. Notably, the experimental results support the
simulation experimental results in more depth.

To further demonstrate the performance of the proposed
method in tracking the direction and velocity of the target
person, we designed the experiment as shown in Fig. 8. The
robot responds quickly to abrupt changes in the direction
of the target person with a short response time. Besides,
despite significant fluctuations in the target person’s velocity,
the robot can steadily accompany the target person side-by-
side and adapt to changes in the target person’s motion. It
demonstrates the proposed method’s robustness and excellent
performance in coordinating the motion between the target
person and the robot.

VI. CONCLUSIONS

This study presents an effective human-accompanying
control strategy for improving the motion coordination be-
tween the target person and the robot. Firstly, a human-robot
interaction model based on the separation-bearing-orientation
scheme is built to ascertain the kinematic states of the
human-accompanying system. Then, a human-accompanying
controller is designed based on the MPC, which can achieve
a stable and accurate relative position with the target person
while adapting to changes in the target’s direction and
velocity. Moreover, behavioral dynamics integrated into the
controller as the obstacle avoidance component allows the
robot to mimic human obstacle avoidance behavior. Specifi-
cally, an EMTM is employed to acquire the target person’s
position and orientation directly. Experimental results show
that the control strategy can drive the robot to accompany
the person side by side robustly.

However, the desired state of the human-accompanying
system is artificially predetermined, making this method in-
appropriate for the narrow passage. Thus, future work should
focus on developing an adaptive decision-making strategy
that considers environmental information to adjust the system
state accordingly. With such advancements, the flexibility
and adaptability of the human-accompanying system can be
highly enhanced.
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