IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. FEBRUARY, 2026

A Shopping Service Robot Framework with Visual-WEM Tracking

and Intersection-Aware Following

Hanchen Yao®, Jianwei Peng®, Houde Dai®, Senior Member, IEEE, Fanbiao Li®, Senior Member, IEEE,
Tim C. Lueth®, Senior Member, IEEE

Abstract—The shopping service robot (SSR) is designed to
offer a superior shopping experience through its continuous
target following and companion services. However, the SSR
encounters difficulties in complex environments, including vi-
sual occlusions and spatial constraints in narrow aisles. To
address these difficulties, the study proposes a shopping service
robot framework that integrates innovative perception, following
control, and path planning modules. Firstly, the perception
module employs a multi-sensor fusion method for human target
tracking, integrating both red-green-blue-depth (RGB-D) camera
and wireless electromagnetic (WEM) data by using an extended
Kalman filter (EKF). Secondly, the target-following control mod-
ule employs an omnidirectional constrained control law, which
ensures synchronized orientation alignment between the SSR and
the human target. Finally, the path planning module employs
topological mapping to encode intersection geometries as path
nodes, thereby guiding the SSR pass through narrow shelf aisles.
In real supermarkets, we evaluated the target tracking approach
under shelf occlusions and the human following task within
narrow aisles. Experimental results demonstrate that the visual-
WEM tracking approach achieves a pose tracking accuracy of
(4.56 mm, 2.98°) under shelf occlusions. This study establishes the
feasibility of human-robot collaboration in facilitating a hands-
free shopping experience, highlighting its potential as a substitute
for conventional shopping carts.

Index Terms—Human-robot interaction, multi-sensor fusion,
human following and companion, shopping service robot.

I. INTRODUCTION

HOPPING service robots (SSRs) are transforming retail
operations by integrating capabilities such as shelf scan-
ning for inventory management [1], artificial intelligence (AI)-
based conversational interfaces for customer inquiries [2], and

Manuscript received July 7, 2025; accepted February 8, 2026. Date of
publication February 11, 2026; date of current version February 11, 2026.
This letter was recommended for publication by Associate Editor and Editor
upon evaluation of the reviewers’ comments. This work was supported in part
by the Fujian Provincial Science and Technology Plan Projects under Grants
2023Y9136, 2024YZ036017, 202413020, and 2025T3006, and the Open
Project Program of Fujian Key Laboratory of Special Intelligent Equipment
Measurement and Control under Grant FJIES2023KF02. (Corresponding
author: Houde Dai)

Hanchen Yao, Jianwei Peng, and Houde Dai are with the Quanzhou
Institute of Equipment Manufacturing, Fujian Institute of Research on the
Structure of Matter, Chinese Academy of Sciences, Jinjiang 362216, China.
They are also with the Fujian College, University of Chinese Academy of
Sciences, Fuzhou 350002, China (e-mail: yaohanchen21@mails.ucas.ac.cn;
12531290 @mail.sustech.edu.cn; dhd @fjirsm.ac.cn).

Fanbiao Li is with the School of Automation, Central South University,
Changsha 410083, China (e-mail: fanbiaoli@csu.edu.cn).

Tim C. Lueth is with the Institute of Micro Technology and Medical
Device Technology, Technical University of Munich, Munich 80333, Germany
(tim.lueth@tum.de).

This letter has supplementary downloadable material available at
https://doi.org/10.1109/LRA.LRA.2026.xxxxxx, provided by the authors.

Digital Object Identifier 10.1109/LRA.2026.XXXXXX

.\\\\\\\\\j S S S S SN XXX
AN \((((((ES]
S
@
N

(1

(b) (©)

Fig. 1. Motivation of the proposed SSR framework. (a) The snapshot of the
SSR operating in shelf areas. (b) The tracking failure of visual sensors. (c)
The following failure of control methods in a narrow passage with sharp turns.

human-following functionality for hands-free shopping assis-
tance [3-4]. Specifically, the human-following functionality
not only provides the practical benefit of carrying goods,
but also offers a socially interactive experience for customers
throughout their entire shopping journey [5-7].

Nevertheless, the real-world deployment of SSR in the
context of human-following functionality poses significant
challenges, primarily due to critical issues in perception and
motion control. Firstly, the shelf area constitutes a high-density
occlusion environment. Figure 1(a) and 1(b) demonstrate a
typical scenario of tracking failures: when a human target
turns at an intersection, the SSR’s optical sensors lose line-
of-sight of the human target. Secondly, the movement intent
of humans can undergo abrupt changes. In a real shopping
scenario, the human target does not move at a constant velocity
and performs unexpected maneuvers. For instance, the motion
of a human target can be interrupted by a sudden stop, which is
triggered when the human target inspects an item on the shelf.
Thirdly, narrow aisles between shelves present a navigational
bottleneck. In Fig. 1(c), the blue trajectory shows the planned
path of SSR. In contrast, the red trajectory results from
traditional control methods not integrated with path planning,
which is driven only by the human target’s reactive motions.

Optical and wearable sensors are the predominant sensors
for target tracking. (I) Optical sensors. Optical sensors (e.g.,
depth camera, laser scanner, and laser-visual fusion) provide
abundant visual information but suffer from target loss in
shelf-occluded scenarios. For instance, red-green-blue-depth
(RGB-D) cameras are constrained by a limited field of view
(FOV) [8-9]. Besides, the performance of RGB-D cameras
is highly sensitive to light intensity [10]. In contrast, laser
scanners provide superior tracking performance with an ex-
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tensive FOV and distance [11-13]. However, the laser scanner
struggles to distinguish obstacles with leg-like shapes. (2)
Wearable sensors. Wearable sensors utilize wireless signals to
track the human target equipped with pose tracking devices.
In [14], human targets wear radio frequency identification
(RFID) tags at their waists. To this end, SSR achieves human-
following functionality by maintaining a specific distance
between the RFID reader and the tag. Alternatively, the ultra-
wideband (UWB) system tracks the human target by utilizing a
wrist-worn UWB tag [15]. Besides, wireless electromagnetic
(WEM) signals can penetrate the human body [16], which
enables target tracking in multi-person scenarios. Although
wearable sensors can address the visual occlusion issue in
target tracking, their signal attenuation near metal shelves
requires further verification.

To address the issue of visual tracking occlusion in shelf
areas, multi-sensor fusion has been identified as a promising
solution. (1) Optimization-based fusion. Typically, a graph
optimization method transforms sensor constraints of a stereo
camera and laser scanner into factor graphs [17]. However, the
computational complexity increases sharply with the number
of humans and obstacles. (2) Learning-based fusion. To
address timestamp synchronization issues of multiple sensors,
learning-based fusion methods input sensor data into end-to-
end fusion networks. For instance, Li et al. [18] proposed a
multi-view camera and LiDAR fusion method for bird’s-eye-
view (BEV) perception. Due to the limitations in real-time per-
formance and generalization capability, the learning-based fu-
sion methods necessitate the development of more lightweight
network architectures. (3) Filter-based fusion. Filter-based
fusion is well-suited for human target tracking in supermarket
environments with real-time dynamic requirements. In [19],
a constrained estimation projection method is proposed to
fuse UWB and camera data to track a human target. Kang
et al. [20] developed a Markov-based extended Kalman filter
(EKF) method to update accelerometer and magnetometer
data. Although improving the response speed of EKF, the
Markov chain introduces larger random errors. Yang et al. [21]
developed an adaptive EKF to reduce localization oscillation.
The adaptive EKF is achieved by updating the noise covariance
matrix and previous estimates from IMU and UWB measure-
ments. In summary, EKF-based fusion methods have made
significant breakthroughs in mitigating environmental noise.
However, EKF necessitates further improvements to handle
sudden sensor failures (e.g., visual occlusion).

To address the human-following challenges at shelf inter-
sections, an increasing number of SSRs integrate following
control with path planning. (1) Traditional control methods.
Previous research on traditional control methods focused on
improving the SSR’s control precision while minimizing the
human-robot distance error, including impedance control [22],
linear quadratic regulator (LQR) [23], and model predictive
control (MPC) [24-25]. The traditional control methods are
highly dependent on the accuracy of the underlying model.
Besides, deep reinforcement learning (DRL) improves the
SSR’s naturalness by learning the shopping path of customer
preferences [26]. However, DRL exhibits poor performance
in supermarkets, primarily due to a lack of training data that

accounts for sudden customer behaviors. (2) Path planning
methods. To navigate through narrow and complex shelf aisles,
path planning methods are employed to generate a set of
virtual path nodes. For example, Yuan et al. [27] transferred
laser points of the intersection map into a Voronoi graph.
Thus, the SSR navigates narrow intersections by locating the
next path node. Lewandowski er al. [28] classified occlusion
situations in supermarket environments, where point clouds
were collected by a RGB-D camera. Thus, the simultaneous
implementation of human-following control and path planning
enhances the SSR’s performance at shelf intersections.

In this study, a novel shopping service robot framework
is proposed to ensure reliable human-following functionality
in supermarket environments. The framework comprises three
core modules: perception, following control, and path planning
modules. Main contributions are highlighted as follows:

1) An EKF-based visual-WEM fusion method is proposed
to address the target tracking challenge in shelf occlusion
areas. When the human target exits from the camera’s
field of view, the EKF undergoes a transition from
a fused visual-WEM tracking to a reliance on WEM
tracking alone.

2) An intersection-aware following method is proposed to
follow the human target at shelf intersections. To en-
sure safe navigation through narrow shelf intersections,
the proposed method generates virtual path nodes and
guides the SSR to avoid obstacles while continuously
following the human target.

The remainder is organized as follows. Sections II and III
presents the proposed SSR framework and its experimental
results, respectively. Finally, Section IV concludes this article.

II. PROPOSED FRAMEWORK

A. Perception Module

In Fig. 2, the self-developed SSR integrates optical sensors
( RGB-D camera and laser scanner) and wearable sensors
(WEM tracking device). In the perception module, the RGB-D
camera and WEM tracking device are employed to track the
human target, while the laser scanner detects environmental
obstacles. Besides, the RGB-D camera is employed to identify
shelf intersections. The point cloud data is utilized by the path
planning module to generate topological maps.

(1) Obstacle Detection. To distinguish between human
targets and obstacles, a density-weighted support vector data
description (DW-SVDD) method is utilized for clustering leg-
shaped point clouds from laser data [11]. The position of
obstacles x,; is given by:

min L (Ra c, f) =R*>+ 021;1 P (Xob) F (Xob) 13 1

st o — ol < B2 46,62 0.F () = (G.W) D
where (R,c,&) are the hypersphere radius, center of the
sphere, and relaxation variable, respectively. C' is the penalty
factor. P(x,p) is the density weight. F'(x,;) is a function that
maps data from the original space to the feature space of girth
feature G’ and width feature .
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Fig. 2. The proposed framework of the shopping service robot (i.e., SSR). The SSR is comprised of three primary modules: visual-WEM fusion perception,
omnidirectional constrained human-following control, and intersection-aware path planning.

(2) Intersection Recognition. In Fig. 3, the RGB-D camera
categorizes intersections between shelves into three topologi-
cal map types: L-type, T-type, and cross-type. The intersection
features are obtained as follows:

Lin = dmin sin ezn
Win = Zin2 — Zin1 (2
Dipn = —Lin — Tin

where (L;,, Win, D;y) are the width feature of the current
aisle, the width feature of the intersection, and the depth
feature of the intersection, respectively. d,,;, is the shortest
distance from the RGB-D camera to the shelf in the point
cloud. 6;,, is half of the RGB-D camera’s FOV. z;,1 and z;,2
represent the starting and ending points of the varying depth,
respectively. x;,, is the distance from the starting point to the
ending point of the turning area.

(3) Human-Target Tracking. In Fig. 4(a), the WEM
transceiver module is mounted on the center of the SSR
platform, while the receiver modules can be worn on the wrist
or waist of human targets. While visual tracking fails under
shelf occlusion, the WEM tracking achieves the non-line-of-
sight (NLOS) propagation of electromagnetic waves.

Figure 4(b) illustrates the principle of the WEM tracking
device, where the transmitter and receiver are three-axis coils.
Thus, magnetic moment vectors of the transceiver and receiver
are denoted as m; and n;, 1 = 1,2, 3. The vector p is defined
as a positional displacement from the WEM coordinate frame
{rwEean} to the human coordinate frame {hw gar}. In the
frame {rwgn} generated by the WEM transceiver ¢, the
magnetic flux b; at position p is given by:

_ ¢ (3p(mip)  my
i = 5 3
4\ el Ip
where 4 is the permeability of the medium (Unit: N/A?).

Then, the rotation matrix R describes the rotational transfor-
mation from the frame {ry gas } to the frame {hy gas}. Thus,
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Fig. 3. Types of shelf intersections. (a) L-type intersection. (b) T-type

intersection. (c) Cross-type intersection.

the measured magnetic flux by;, 4,7 = 1,2, 3, is detected by
the WEM transceiver ¢ and generated by the coil j, as:

ynTRT (3f>f)T - I) m;

@
4r |p||*

bij = H;FRTbj =

where p = p/ ||p|| and I are the unit normalized vector and
the identity matrix, respectively.

To formulate a simplified least-squares objective function
for the EKF estimation, the b;; is arranged to a measurement
vector Yw g, as:

uRT (3pp" ~ 1)
4 p|’

YweMm = (5)

In Fig. 4(c), the RGB-D camera is inherently limited by
line-of-sight occlusion [8-10]. In this study, the WEM tracking
device and RGB-D camera are adopted to track targets. Under
unobstructed conditions, the proposed EKF-based tracking
method dynamically augments the WEM’s optimization ma-
trices p and R through RGB-D data, thereby improving both
tracking velocity and accuracy. Besides, the WEM tracking
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Fig. 4. Schematic diagram of the human target tracking system. (a) The sensor deployment for tracking human targets. (b) The WEM coordinate frame. (c)

The RGB-D camera coordinate frame.

device maintains uninterrupted target tracking during visual
occlusion scenarios induced by shelves.

The [Erojective correspondence between a 3D pose U =
[z,y,2]" in the camera coordinate frame {rrep_p} and
its corresponding 2D position Yrep_p = [a,b]T in the
human coordinate frame {hrgp_p} can be governed by the
perspective transformation model [7], as:

. a Sm7 + ao
YRGB-D = bl = snd 1 by

z
5.t. Gmin < 0 < Amazs bmin <0 < bag

;o (0)

where s,, > 0 and s,, > 0 are scaling factors in the horizontal
and vertical directions. (ag, bg) are feature points in the frame
{rreB-D}- (@min, Gmaz) and (bpmin, bmaz) are FOV’s sizes.
EKF [20-21] serves as a linearized extension of the Kalman
filter, which is designed to estimate the state of a dynamic
process and its associated uncertainty from noisy observations.
In this study, the human target tracking can be described in
an EKF-based state space equation, as:
{ Xk+1 fk: (Xka ¢k}) (7)

Zt1 = hppn (Xet1, Prs1)

where x5 and xj4; are the process state vector and sensor
measurement, respectively. ¢ and (y41 are Gaussian noise
of process and measurement. fi (-) and hy (-) are nonlinear
process and measurement model functions, respectively.

The state vector of a human target is represented by a
unit quaternion, as pr = [po_’k,plvk,pgyk,pgyk]rr, a SSR’s
non-gravitational acceleration ay, a localization bias of WEM
tracking uyg, a disturbance of RGB-D camera dj. Then, the
temporal evolution of the state vector is governed by:

Xpy1 = [Pr41 @kp1 Upp dk+1}T
£, (0.0
exp(Q(wr)Ts) 0 0 0 (8)
B 0 Wl 0 0 4
- 0 0 I o™
0 0 0 CdI

where x;,, and x;| are the estimated prior and posterior
values of the state vector at time k + 1 and k, respectively.
0 < ¢, <1land 0 < ¢g < 1 are cut-off frequencies of
the first-order low-pass filter. Q (wy), Ts, wg, and I are the

skew-symmetric matrix in (9), the sampling period, the strap-
down integration of the corrected angular velocity, the identity
matrix, respectively.

The matrix exponential operator exp (-) is computed via a
second-order Taylor series approximation, as:

0 —Wxk —Wyk TWzk
Q(wk):l wz,k 0 wz,k *wy,k
2 lwyr —wer 0 Wk | . (9)
Wz k Wy k —Wz k 0

exp (Q (wi) Ts) = T+ Q (wy,) + 1 (wy,)? T2

S

To calculate the covariance matrix of the prior error Py, ,,
the model linearization is described as follows:

P, = AP AL +L.Qf LY, (10

where Ay, Ly, and Qy, are the state transition Jacobian matrix,
process noise covariance matrix, and process noise Jacobian
matrix, respectively.

In the measurement updating, the estimated measurement
is calculated in (5) and (6). The covariance matrix of the
posterior error P;: 1 1s described as:

P:—«-l = (I — Kp41Hpq) P (1n

where K11 and Hy; are Kalman gain matrix and observa-
tion model Jacobian matrix, respectively. Ky, and Hy, are
given by:

K = P;+1HE+1
+ Hk+1PIZ+1H;£+1+Mk+1Rk+1ME+1
oh Ywem 1 0
Hk+1: kil + = | A
o e Frap-p 0 A )
— k+1 —
Mk+1_ Oy x;-l_]:
2
R _Noweul 0
LT o2 I
RGB—-D

where ¥w ey and Yrep—p are the measurement matrices of
the WEM tracking device and RGB-D camera, respectively.
owrm and orep_p are standard deviations.

Under unobstructed conditions, the proposed method im-
proves tracking accuracy by dynamically optimizing the
Ywewm and Yrap—p. Conversely, the ¥y pas exhibits the ca-
pacity to sustain uninterrupted target tracking during instances
of visual occlusion induced by shelves (yrgp—p = 0).
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B. Following Control Module

(1) SSR Dynamic Model. The SSR’s velocity v and azimuth
1 are controlled by the driving forces F; and F)., which are
formulated by the differential-drive robot dynamic model, as:

2¢ 712 (ur+up)

_ —2cyv +
Mr2+2J, r2J,+202J,
krl(uy,—uy) )

{ b

¥ = Mr?kfz/ij + =g TR,
where u; and w, are the driving inputs of the SSR’s left and
right wheels, respectively. ¢y is the viscous friction factor on
the flat ground. M is the SSR’s mass. r is the wheel’s radius.
J, is the SSR’s rotational inertia. [ is the distance between
the wheel and the center of gravity (CoG). J, is the moment
of inertia around the robot’s CoG.

(2) Human-Following Control Law. To achieve the above
control objective of SSR dynamics, a human-following control
law is designed to achieve a full-state constrained control
within a predefined time interval. The human-robot error is
defined as e; = x;j, — X, j € {1,2,3}. Then, the human-
following control law is formulated as a time-varying function:

& =p(t)e;,

(13)

t 1— i
1—7)e Tat 0<t<Ty , (14)

=
p(t) = Ta
1L, Ty <t

where p (t) is monotonically increasing with p (0) = 0 and
p (Tq) =1 at the predefined time Ty.

(3) Barrier Lyapunov Function for Stability Proof. After
the control law is designed for the human following task,
Lyapunov-based synthesis is adopted in the performance anal-
ysis of the SSR, with the type of nonlinear systems [29-31]. To
ensure the states of the robot system meet the required stability
criteria in supermarket environments, the barrier Lyapunov
function (BLF) is defined as:

15)

where k; is the boundary value for the tracking error &;.

As asserted by [29], the SSR is boundedly stable within
a given time Ty, on the condition that the BLF satisfies the
following requirements:

V< —% (v=E+vitE) ta,

where 7 € (0,1) is the convergence rate tuning parameter.
A > 0 is a residual bound.
Thus, the time derivative of (15) is calculated as:

V=D& 61— 268, | + Doy | 65— 28,
kl k2
.k
+ Dsé; (és — 3é3>
k3

(—k;jD;&) — k;®;D}&™ — k;®;Djef" + A

k? m
J J

(16)

NE

<
1

.
I

+A

-

-
I
—

7)

According to (16), the stability proof requirements in
(17) are satisfied. It is concluded that the proposed human-
following control law in (14) achieves bounded stability within
the predefined time 7. Consequently, the proposed control
objectives are theoretically achievable.

C. Path Planning Module

()
O
———()
(n——,

Fig. 5. Schematic diagram of path planning module, including path nodes
(n;), branches (b;), SSR states (s;;)

(1) Path Node Generation. In Fig. 5, the supermarket
environment can be abstracted as a topological map containing
path nodes (n;) and branches (b;), 7,7 € N*. The SSR state
(si5) is defined as the i-th node associated with the j-th branch.
Thus, the path nodes are characterized as:

* A2 * a3

ay
ng —>mny —>MNg —> -
01 02 03

5 ng, (18)
Ok

where ng is the initial position. aj is the k-th robot action,
including turning left (ar ), turning right (ag), and moving for-
ward (a ). oy is the k-th observed intersection types, including
L-type (o), T-type (or), and cross-type (o¢) intersections in
Fig. 3. n} is the k-th temporary path node.

(2) Intersection-Aware Following Law. To follow the hu-
man target in supermarket environments, the reward function
is developed for SSR, as: R(S,A4) : S x A — &, where
S is the SSR state set and A is the SSR action set. Then,
the reward function R is divided into two components: (1)
R0 denotes the positive reward assigned when the robot
successfully reaches the path node position; (2) Rf°!° de-
notes the positive reward assigned when the robot successfully
maintains human-following control. The k-th reward function
is Ry = Rgvoid 4 R’;O”O“’. Thus, the intersection-aware
following law is defined as:

“APriso0) D (Rz“’id + Rgo”ow)] , (19)
k

Xp41 = min
AR

where 7 (s;5, 0% is the following policy. v and ¢ are the SSR’s
velocity and azimuth in (13). A > 0 is the weight of the policy.
Pr(s,;,01) 18 the Bayesian probability of the policy 7 (s, o),
which is influenced by the SSR state s;; and the observed
intersection type oy.

(3) Bayesian Probability for Target Reacquisition. The
SSR traverses all the path nodes and branches in the existing
topological map and calculates the Bayesian probability at
each state. When Py (s, o,) = 1, the SSR stops updating the
path nodes, which indicates that the SSR is reacquiring the
human target’s visual information.
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Fig. 6. Static measurement results of WEM and UWB tracking device under visual occlusion conditions. (a) The experimental setup. (b) Sensor calibration

results. (c) Target tracking results.

III. EXPERIMENTAL RESULTS
A. Visual-WEM Tracking Experiment

To evaluate the tracking accuracy of the perception module
in the shelf area, the proposed Visual-WEN tracking method
was evaluated under visual occlusion conditions. Furthermore,
the accuracy degradation of WEM and UWB signals caused
by the metal shelves was further assessed.

In Fig. 6(a), a differential-drive mobile robot was equipped
with a WEM tracking device (AmfiTrack Gen2, Amfitech Inc.,
Denmark) and an RGB-D camera (Astra Mini Pro, Orbbec
Inc., China). Moreover, a UWB tracking device (UWB-X2-
AOA, Jiuling Inc., China) was compared with the WEM
tracking device. Both the WEM and UWB receivers were
placed on a metal shelf. In addition, a blue metal baffle was
employed to obstruct the RGB-D camera’s FOV as well as the
wireless signals of both WEM and UWB.

Figures 7(b) and (c) present the static target tracking results.
In Fig. 7(b), the UWB and WEM receivers were deployed at
12 predefined positions, which cover an X-coordinate range of
(50 cm, 110 cm) and a Y-coordinate range of (-30 cm, 30 cm).
The experiment was repeated 10 times for each predefined
position. In Fig. 7(c), the WEM tracking obtains mean position
and orientation errors of (0.63 + 0.26 cm, 0.16 + 0.11°) at 70
cm height, while showing (0.57 £+ 0.22 cm, 0.19 £ 0.15°) at
90 cm height. Besides, the Visual-WEM system exhibits less
variation in positioning error compared to the Visual-UWB
system. In summary, the WEM tracking outperforms UWB
tracking in positioning under visual occlusion conditions.

A comprehensive comparative analysis of dynamic tar-
get tracking performance was performed under both visual-
occlusion and non-occlusion conditions. Both UWB and WEM
receivers were moved alongside the metal shelf for 10 s. The
robustness of dynamic tracking was evaluated by using the
root mean square error (RMSE), as:

N L \2
21':1 (yi — Us)

N 9
where y; and ¢j; are the ground truth and sensor measurement
of the i-th measurement point. IV is the the total number of
measurements.

RMSE = (20)

TABLE I
DYNAMIC MEASUREMENT RESULTS OF MULTI-SENSOR FUSION IN
SHELF AREAS

Sensor (Condition)  Z-Axis RMSE DLR
Visual-WEM 70 cm (5.17 mm, 3.14°) 0.48%
(Visual Occlusion) 90 cm (5.09 mm, 3.01°) 0.20%
Visual-UWB 70 cm  (14.22 mm, 13.40°)  3.00%
(Visual Occlusion) 90 cm (13.90 mm, 11.24°)  5.40%
Visual-WEM 70 cm (4.60 mm, 2.98°) /
(Non-Occlusion) 90 cm (4.51 mm, 1.81°) /
Visual-UWB 70 cm (7.17 mm, 4.84°) /
(Non-Occlusion) 90 cm (7.04 mm, 4.63°) /

To quantify the sensor signal degradation under occlusion
conditions of metal shelves, the data loss rate (DLR) was
formulated as:

Mlost Mlost
Dlost _ Hlost o 100%,
Mtotal ft

where Mj,s; is the number of lost sensor data. M;,,; is the
total number of sensor data. f and t are sampling frequency
and time of sensors, respectively.

In Table I, the visual-WEM tracking demonstrates supe-
rior performance in dynamic target tracking. The RMSE of
visual-WEM shows (5.09 mm, 3.01°) at 900 mm height with
visual occlusion conditions, compared to (4.51 mm, 1.81°)
under non-occlusion conditions. Additionally, the experimental
results indicate that the visual-WEM tracking shows less
signal attenuation in the metal shelf area (DLR < 0.50%). In
summary, these results highlight the robustness of the proposed
visual-WEM tracking in effectively handling visual occlusions.

DLR = 1)

B. Intersection-Aware Following Experiment

The proposed SSR framework was deployed in a real
supermarket. Figures 7(a)-(e) present the intersection-aware
following experiment in shelf areas. This experiment evaluates
the entire shopping process of a human target’s shopping be-
havior, including walking in the shelf area, picking goods, and
checking out. Figures 7(f)-(i) demonstrate the social avoidance
experiment in narrow aisles. The SSR facilitates social inter-
action with two customers while concurrently accompanying
the human target throughout the shopping experience.
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Fig. 7. Experimental results of intersection-aware following in supermarket environments. (a) The snapshot of the intersection-aware following experiment.
(b) The path node. (c) Trajectories of human target and SSR. (d) The SSR’s motion state. (e) The SSR’s control input. (f) Snapshots of the social avoidance
experiment. (g) The map with the path nodes. (h) The output of the obstacle avoidance control. (i) The control input of the SSR and human target.

Figure 7(a) shows the snapshots of the SSR reaching path
nodes. After the intersection had been detected, path nodes
(no - ng) were autonomously generated and updated in Fig.
7(b). Moreover, the recorded trajectories of both the robot
and the target are displayed in Fig. 7(c). To pass through
the narrow intersection, the SSR moved from the human
target’s left side to behind at t; = 7.8 s. When the SSR
entered an open area (to = 37.8 s), the SSR moved to the
target’s left side. In Fig. 7(d), the kinematic error between
the robot and human target remains within a small variation
bound, as [(—0.42,0.49), (—1.75,0.20), (—1.84,0.66)]T. Fig.
7(e) shows the SSR’s control input év,w)T varied within the
range [(—0.97,0.93), (—1.62,1.74)] . When the visual sensor
lost the human target at the shelf intersection (e.g., n1, no,
ns), the SSR reacquired the target by employing the proposed
intersection-aware following method.

In Fig. 7(f), the social interaction between the SSR and
two customers was recorded. The path nodes are visualized in
Fig. 7(g), where the SSR navigates through the same two shelf
interactions (e.g., n1 and ng) previously encountered in Fig.
7(b). In Fig. 7(h), a safe distance was maintained from the
human target and two other customers while accompanying
the target on a shopping excursion. The red solid and dashed
lines represent the interactions of Customers 1 and 2 with
the SSR, respectively. The SSR accelerated while Customer
1 was passing by at 19.2 s; then the SSR decelerated to
avoid colliding with Customer 2 ahead at 38.9 s. In re-
sponse to the varying velocity and angular velocity of the
human target in Fig. 7(i), the SSR adjusted control inputs
(v,w)" =1(0,1.38),(—1.87,1.92)]" to maintain the human-
robot following. Thus, the proposed method ensures safe and
friendly interactions between the SSR and customers.
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IV. CONCLUSION

In supermarket environments, shopping service robots sig-
nificantly improve convenience by eliminating the need for
manual cart handling, thereby optimizing customer shopping
efficiency. Nevertheless, the current implementation faces
substantial challenges when visual occlusion occurs at shelf
intersections, where obstructed camera views frequently lead
to failures in target tracking and following.

Accordingly, this study addresses two key challenges: the
human target tracking under visual occlusions and the human
target following in narrow passages. To achieve reliable track-
ing, we propose an EKF-based visual-WEM fusion method.
The EKF prioritizes the high-precision fused pose dynam-
ically while the human target is in the camera’s FOV. In
the event of visual failure at shelf intersections, the WEM
tacking is utilized to maintain stable tracking. Meanwhile, an
intersection-aware following method is proposed to enable safe
navigation through narrow passages. A human-following con-
trol law is proposed in the following control module, ensuring
convergence of the SSR’s pose to the target human’s pose
within a predetermined time. The navigation planning module
employs an intersection-aware navigation law to direct the
SSR through path nodes. Consequently, SSRs can consistently
track and follow the human target in dynamic and complex
environments.

A key limitation of this study is that the SSR was designed
to follow only a single target. The multi-target following
task has been demonstrated to be inadequate in dynamic and
densely populated supermarket environments, where the SSR
must navigate around multiple customers. Consequently, the
collaboration between multiple service robots and customers
poses a significant issue for future investigation. To further
address the challenges in complex and dynamic environments,
our future work will focus on two directions. Firstly, the
integration of visual-language navigation (VLN) will facilitate
the interpretation of verbal requests by the SSR, thus enabling
it to guide shoppers to specific items. Secondly, we aim to
bridge the gap between structured retail settings and robust
service robot applications.
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